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TABLE 1. CHEMICAL CONTENT IN COMMON OIL PALM BIOMASS FEEDSTOCKS

 
Composition

   Oil palm biomass chemical composition (wt %)

  EFB OPF OPT OPMF Kernel shell

) K%,,-,"'%) WL.ZC) EC.IC) BB.EE) WH.EB) DW.BL
) _%;(!%,,-,"'% ) DC.WI) BW.WL) DB.ED) H.BE) BD.BB
) _","!%,,-,"'% ) UL.LU) ZC.LW) EB.ZW) EH.UE) EB.EZ
) \(9#(# ) DW.WZ) DL.WB) DL.WU) BD.WW) EE.IB
) `:,"'% ) BH.UW) BU.IB) DI.II ) EC.EH) UW.UE
) a,-!"'% ) BW.UU) BC.UZ) DL.WB) BW.BH) BD.BB
) @'2) D.U) B.L) B.E) W.H) D.B

V"*%b)cS5).)%;0*:)>&-(*)7-#!2<)34S).)"(,)0+,;)>&"#/<)34=).)"(,)0+,;)*&-#A<)34PS)d)"(,)0+,;);%'"!+&0)>(7&%<
T"-&!%b)P"2*+&)et al<)?BCDIFO)K2(#9)+#/)V9)?BCDEFO)G-9+:+2 et al<)?BCDEFO)P"2/)5+':+&-//(#)et al<)?BCDBFO)T2(#"M)et al.)?BCDDFO)5"#")
et al<)?BCCHFO)K2%8)+#/)52+*(+)?BCCLFO)T+A+)et al<)?BCCLFO)T2(7+*+)et al<)?BCCLFO)@7/-,)X2+,(,)et al<)?BCCU1)BCCLFO)\+8)et al<)?BCCZFO)e+#)
G"',() et al<)?BCCZFO)@7/-,)X2+,(,)+#/)G"R;+#)?BCCEFO)\+8)+#/)f(+#9)?BCCDFO)T&%%A+,+)et al<)?BCCDFO)X(&A+,/:)+#/)T-'+#*")?DHZUF<)
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cellulosic extraction in the pulp and paper industry 
(Zheng et al., 2009). This method also has been 
exploited to enhance the yield of lignocellulosic 
chemicals. Furthermore, there are chemicals that 
have been reported to have a significant effect on the 
structure of lignocellulosic biomass, where the pre-
treatments can be carried out at room temperature 
and pressure but they do not produce toxic residues 
for the downstream processes. The chemicals used in 
chemical pre-treatment are selected from oxidising 
agents, alkali, acids and salts that are purely 
initiated by the chemical reactions for breaking 
biomass structure to degrade and/ or extract lignin, 
hemicelluloses and cellulose. 

Acid Pre-treatment 

Acids are very effective and widely known 
chemical that have access to glucosidic bonds in 
hemicellulose and cellulose in biomass. Acids 
have the ability to remove hemicellulose and they 
have been used as parts of overall processes in 
fractionating the components of lignocellulosic 
biomass (Zhang et al., 2007). The pre-treatment 
using acid requires high temperature and pressure 
to achieve high yield of the targeted chemicals. The 
reaction also depends on several parameters like 
type of acid, concentration of acid and ratio of solid 
to liquid.

Different kinds of acid have been used such 
as sulphuric acid, nitric acid, hydrochloric acid 
and phosphoric acid. A number of studies have 
investigated the pre-treatment using sulphuric acid 
due to its high catabolic activity. Dilute sulphuric 

acid has traditionally been used to manufacture 
furfural from biomass (Esteghlalian et al., 1997). 
This chemical pre-treatment usually involves 
the addition of diluted acids (range from 0.1% to 
2.5% w/w) to the biomass, followed by reaction 
temperatures between 130°C and 210°C (Nguyen et 
al., 2000; Saha et al., 2005). 

Kristiani et al. (2013) reported that the pre-
treatment in 0.25%-2% of H2SO4 did increase the 
specific surface area of cellulose from 2.23 to 5.57 
m2 g-1, and also showed the decreasing crystallinity 
of cellulose. Other studies done by Amirkhani et al. 
(2015) showed that 94% conversion of xylose was 
obtained under 2% of H2SO4 at 120°C and 20 min of 
reaction times. Lignin preparation from OPEFB by 
successive treatment with 1% (w/w) H2SO4 at 121°C 
for 60 min and followed by treating in 2.5% NaOH 
at 121°C for 80 min resulting in a high lignin yield of 
28.89% (Medina et al., 2015).

The disadvantage of this method is the high 
operational and maintenance cost compared to 
other chemical pre-treatment (e.g., dilute alkali) and 
physico-chemical methods [e.g., steam explosion 
and ammonia fibre explosion (AFEX)] (Sun and 
Cheng, 2002; Kumar and Murthy, 2011). A suitable 
material for the reactor is required to withstand the 
corrosiveness and toxicity of the acid. An extensive 
washing and/or a detoxification step is also required 
to remove the acid before further step is taken for 
other product (Nguyen et al., 2000; Saha et al., 2005; 
Sassner et al., 2008).

Acid pre-treatment also allows to further 
hydrolyse the hemicelluloses, especially xylan 
into sugar such as xylose, mannose, acetic acid, 

Figure 1. Pathway of different pre-treatments on oil palm biomass (OPB).
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galactose, glucose, etc. In an industrial process, 
the reaction is always at high temperatures and 
pressures that lead to the  degradation of glucose 
and xylose into furfural and hydroxymethyl 
furfural (HMF), respectively and also other further 
degradation forms such as formic acid and levulinic 
acid (Kootstra et al., 2009; Davies et al., 2011). Partial 
breakdown of lignin also leads to the formation of 
the phenolic compounds.

Organic acids such as maleic, oxalic, succinic, 
fumaric and acetic acid have been suggested as 
an alternative due to their relatively low acidities 
and high solubility to lignin. Yonga et al. (2016) 
obtained the highest yield of furfural (35.8%) after 
treating OPF in formic acid at high temperatures 
(240°C-280°C). The advantage of using organic 
acid is the monocarboxylic acid has lower catalytic 
performance due to their difference in pKa compared 
to dicarboxylic acids (Trzcinski and Stuckey, 2015). 

 
Alkaline Pre-treatment

Alkali compound or salt or catalyst is widely 
studied in chemical pre-treatment. Various alkali 
reagents have been used such as sodium hydroxide 
(Silverstein et al., 2007; Wang  et al., 2010), potassium 
hydroxide (Wanitwattanarumlug et al., 2012; Sharma 
et al., 2013), calcium hydroxide (lime) (Sierra  et al., 
2009), ammonium hydroxide (Prior and Day, 2008; 
Sherman  et al., 2012), aqueous ammonia (Kim  et 
al., 2009) and hydrogen peroxide or combination 
of these (Banerjee et al., 2012). Alkaline hydrolysis 
can be operated at lower temperature and pressure 
compared to other chemical pre-treatment method, 
but the reaction times can differ depending on the 
different types of biomass used (Bali  et al., 2015). 
During the alkaline hydrolysis process, the structure 
of biomass is swelling, leading to alteration of lignin 
structure and breaking the ester and glycosidic 
chains. 

Pre-treatment of OPF  with aqueous NaOH 
(4.42%) at 100°C for 58.31 min resulted in better 
separation of cellulose, hemicellulose and 
lignin, which were 41.42%, 31.93% and 26.06%, 
respectively (Mohd Sukri et al., 2014). KOH has 
selectively removed xylan (Hendriks and Zeeman, 
2009). Mohd Nasir and Saleh (2016) reported that 
they have extracted xylan from EFB in 3 M KOH 
at 40°C, with 4 hr of extraction time. A technology 
on xylooligosaccharides (XO) production from 
OPEFB-xylan using immobilised xylanase in a 
packed bed column reactor has been developed 
by Noorshamsiana et al. (2015). The OPEFB was 
pre-treated with KOH and the resulting xylan was 
further hydrolysed for XO generation.

The significant disadvantage is that the alkali 
salt was found to be converted into irrecoverable 
salts that may be absorbed by the biomass during 
the pre-treatment process. The presence of a large 

amount of salt is a challenging issue for alkaline 
hydrolysis (Zheng  et al., 2009). This method can be 
improved by the addition of other chemicals such 
as urea (Zhao  et al., 2008) or in combination with 
other pre-treatment methods. Acid pre-treatment 
(removal of hemicellulose) followed by alkali pre-
treatment (removal of lignin) results in a relatively 
pure cellulose.

Organosolv Pre-treatment

The organosolvation pre-treatment method has 
drawn a lot of attention since it has the potential 
for utilisation in lignocellulosic chemicals. In 
organosolv pre-treatment, organic solvents are 
used to extract lignocellulosic chemicals, where 
the solvent will increase the pore of the biomass 
and enhances accessibility to the surface area of 
lignocellulosic biomass and significantly reduce the 
lignin contents (Zhao et al., 2009). Organosolv pre-
treatment usually operate at a range of 150°C-200°C. 
The most common solvent used in the pre-treatment 
process are ethanol, methanol, acetone, glycerol, 
aqueous phenol,ethylene glycol, triethylene glycol, 
aqueous n-butanol, tetrahydrofurfuryl alcohol, etc. 
(Taherzadeh and Karimi, 2008). 

Ethanol is the most preferred solvent in 
industries due to its lower cost and low boiling point 
compared to other alcohols such as ethylene glycol, 
tetrahydrofurfuryl alcohol, etc (Arato  et al., 2005). 
Ethanol also has low toxicity and easy to recover. 
Ethanosolv has been explored as an alternative 
to kraft pulping (Pye and Lora, 1991). Goh  et al. 
(2011) have used aqueous ethanol [64% (w/w)] 
at 160°C-200°C for 45-90 min and obtained 96.3% 
recovery of glucose. Alroils  et al. (2009) reported 
that they have used 80% of ethylene glycol in order 
to separate the cellulose, hemicellulose and lignin 
from OPEFB. 

Through the organosolv process, the cost can be 
reduced by recycling the solvents from the process, 
but still there are potential hazards in handling such 
large volumes of organic solvents that limits the 
utilisation of pretreatment process.

PHYSICO-CHEMICAL PRE-TREATMENT

The physico-chemical processes are the 
improvements of existing chemical processes, to 
reduce reaction time and improve the efficiency of 
the process. In order to enhance the removal of lignin 
and increase their efficiency, physical parameters 
such as pressure and temperature are added to the 
established chemical pre-treatment. In previous 
studies, various types of physico-chemical pre-
treatments for oil palm lignocellulosic biomass 
were used. These included pre-treatments such as 
ultrasonic, microwave, ball milling, superheated 

(c) (d)
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and chemical thermo-mechanical. A brief 
description of these technologies is given below.

Ultrasonic Pre-treatment

Ultrasonic pre-treatment is relatively new in 
lignocellulosic biomass pre-treatment technology. 
The effect of ultrasound on lignocellulosic biomass 
is to enhance the extractability of hemicelluloses, 
cellulose or lignin component. It is also used 
to clean cellulosic fibre from used paper and 
to improve the susceptibility of lignocellulosic 
materials to biodegradation by using ultrasound 
power (Asakura  et al., 2008). Besides that, it can 
generate a pre-treated substrate to be more easily 
hydrolysed via increasing the accessible surface 
area and influencing the crystallinity (Toma  et 
al., 2007). In order to determine the optimal 
conditions of ultrasonic exposure for the pre-
treatment of lignocellulosic biomass, the efficiency 
of acid hydrolysis has been evaluated. Previous 
research done by Robiah et al. (2010) have found 
that a maximum xylose yield of 58% was achieved 
when the OPEFB fibre was ultrasonicated at 90% 
amplitude for 45 min. The hydrolysis occurred at 
a low temperature using 2% sulphuric acid; 1:25 
solid-liquid ratio and 100°C operating temperature. 

Microwave Pre-treatment

The combined microwave-chemical pre-
treatment of different feedstock resulted to higher 
sugar recovery. Several chemicals were used 
in microwave/chemical pre-treatment such as 
microwave-assisted dilute ammonia (Chen et al., 
2012) and microwave-assisted FeCl3 (Lu and Zhou, 
2011). Recently, there are two most commonly 
studied chemical methods in the pre-treatment of 
lignocellulosic biomass which are the microwave 
assisted-alkaline and microwave-assisted acid 
pre-treatments. In previous research done by 
Komolwanich et al. (2014), pre-treatment on OPEFB 
was done using the combination of microwave and 
NaOH. It is found that the enzymatic saccharification 
of OPEFB was significantly improved by the removal 
of more lignin and hemicellulose and enhancing 
the cellulose accessibility during the pre-treatment. 
Researchers indicate that microwave drying with 
proper selection of power input, weight of drying 
material and drying time could increase the drying 
rate. As a result, it could save up to 50% of energy 
and significantly decrease the volatile organic 
compound emissions when compared with the 
conventional drying methods (Guanben et al., 2005). 
In fact, microwaves can dry wood strands under 
lower temperatures and higher rates to produce 
dried wood with uniform and less moisture content 
and more permeability (Nomanbhay et al., 2013; 
Torgovnikov and Vinden, 2002; Vermaas, 1995). 

It should suffer from less shrinkage and swelling, 
as compared to that produced by kiln drying and 
traditional methods which are much more time 
consuming and less cost-effective (Guanben et al., 
2005; Leiker and Adamska, 2004; Zhang et al., 1997). 
It can be concluded that although the microwave 
energy consumption is relatively higher than that of 
oven drying based on watt/hr-1, it can be considered 
that much lower time will make the total energy 
consumed to be significantly lower than that of 
conventional methods (Ethaib et al., 2015). Research 
done by Parisa et al. (2010) showed the effectiveness 
of microwave drying in reducing the time and 
better removal of moisture as compared to that of 
oven drying. They were able to get the optimum 
conditions at 6.89 min with a microwave power for a 
1000 g sample and with 14.62% of moisture content.

Ball Milling Pre-treatment

Ball milling is one of the most commonly used 
mechanical activation processes to increase the 
surface area of lignocellulosic biomass. Particle 
sizes and crystallinity index values of the OPB 
were significantly reduced with extended ball mill 
processing time. When OPF fibre was pre-treated 
through ball mill, it produced glucose and xylose 
yields of 87% and 81.6%, respectively, while OPEFB 
produced glucose and xylose yields of 70% and 
82.3%, respectively (Zakaria et al., 2014a). This makes 
milling a good choice as a preliminary pre-treatment 
method for a wide variety of lignocellulosic 
feedstocks.

Superheated Steam Pre-treatment

Superheated steam (SHS) can be an alternative 
treatment method for lignocellulose. SHS treatment 
is advantageous compared to steam explosion as 
it is conducted at atmospheric pressure. Currently, 
SHS has been mainly used for drying (Schwartze 
and Brocker, 2002; Hasibuan and Wan Daud, 
2009). Previous work on the use of SHS for treating 
OPB in order to ease the enzymatic hydrolysis 
of the lignocellulose for sugar production has 
been reported (Nik Mahmud et al., 2013; Bahrin 
et al., 2012). These studies were done to reveal 
the potential of SHS as a novel and alternative 
treatment method for modification of lignocellulose 
towards biocomposite production. The treated 
OPMF obtained in these studies was analysed for 
its chemical component, thermal stability, chemical 
structure and morphological characteristic. Bahrin 
et al. (2012) have claimed that their research on 
SHS treatment of OPEFB for fermentable sugars 
production is the first to be reported. 

Overall, the results obtained suggested that 
SHS is an effective treatment method for surface 
modification and subsequently improving the 
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and their enzymes system, which mainly degrade 
lignin and hemicellulose and a little amount of 
cellulose (Vats et al., 2013; Ray et al., 2010; Hamisan 
et al. 2009; Kurakake et al., 2007; Taniguchi et al., 
2005; Hataka, 1983). Recently, this environmental-
friendly approach has received renewed attention as 
a pre-treatment technique for enhancing enzymatic 
hydrolysis for various lignocellulosic biomass. 
However, literature review has indicated that 
limited studies have been conducted on biological 
treatment of OPB.

Microorganisms Pre-treatment

The most intensively investigated 
microorganisms in the biological pre-treatment 
of lignocellulosic biomass are the white fungi 
as their ligninolytic enzyme could degrade 
lignin efficiently (Isroi et al., 2011; Tanaguchi et 
al., 2005; Zadražil and Puniya, 1995; Martinez 
et al., 1994). Microbial pre-treatment using 
Phanerochaete chrysosporium ATTCC 32629, 
showed significant lignin removal from OPEFB 
with an optimum value of 5.89 Klason lignin. 
Nevertheless, for the same value of Klason 
lignin, delignification by chemical pre-treatment 
needs only 3 hr as compared to seven days for 
microbial pre-treatment. It is also reported that 
the lignin removal is dependent on the microbial 
ability, either to consume lignin or to produce 
biological products such as enzymes, to remove 
lignin (Hamisan et al., 2009). Isroi et al. (2012) 
studied a single biological pre-treatment and a 
combination of phosphoric acid and biological 
treatment on OPEFB. Biological pre-treatment 
was carried out using the white-rot fungus 
Pleurotus floridanus. The composition of OPEFB 
was slightly changed by the fungal pre-treatment, 
but it was significantly altered by the fungal 
followed by phosphoric acid pre-treatment. The 
fungal pre-treatment resulted in the least losses 
of both total solid (1.31%) and total carbohydrates 
(7.89%) compared to the combined pre-treatment 
of fungal followed by phosphoric acid; the 
losses of total solid and total carbohydrates were 
correspondingly 63.55% and 33.77%. Thus, using 
fungal pre-treatment, much more lignocellulosic 
material remains to be utilised, and it has less 
environmental impacts. 

Enzymatic Pre-treatment

Generally, enzymatic pre-treatment is given to 
the lignocellulosic biomass prior to the subsequent 
process for lignin degradation, hence cellulose will 
become more accessible. Amin et al. (2010) studied 
the effect of enzymatic pre-treatment on OPEFB 
prior to the pyrolysis process for degrading the 
lignin structures. The percentage lignin degraded 

characteristics of the natural fibre. Most importantly, 
the use of novel, eco-friendly SHS may contribute 
to the green and sustainable treatment for surface 
modification of natural fibre (Ahamad Nordin et al., 
2013).

Chemical Thermal Mechanical Pre-treatment 
(CTMP)

There are various methods of treatments that 
can be used for the removal of silica bodies from the 
surface of OPEFB fibres; heat treatment, chemical 
treatment and mechanical treatment. Robiah et 
al. (2010) treated the OPEFB fibres by using a 
combination of heat and chemical treatment; acid 
hydrolysis at 100°C and ultrasonic pre-treatment. 
On the other hand, Rosman et al. (2013) treated the 
OPEFB using alkali followed by silane treatment and 
found that the surface treatment of OPEFB fibres 
increases the compactibility with the matrix, thus 
producing superior mechanical properties of the 
reinforced polymer composite. The modifications 
of OPEFB fibres treated with sodium hydroxide and 
succinic acid increased the availability of functional 
groups through chemical modification, and 
interacted strongly with the matrix polymer to get 
better interfacial bonding between fibres and matrix 
(Bhat et al., 2011). Zawawi et al. (2015) reported that 
the effects of pre-treatments on the surfaces of EFB 
fibres are subjected to thermomechanical pulping 
(TMP) process. For fibres treated with NaOH, the 
SEM images showed that alkali treatment made 
the fibre surface rougher with less amount of silica 
bodies. Most of the lignin and small amount of silica 
bodies were removed resulting in a rough surface. 
A study done by Ariffin et al. (2008) claimed that the 
combination of physical, chemical and thermal pre-
treatments have successfully altered the physical 
structure and chemical composition of the OPEFB, 
as well as in reducing sugar production. OPEFB 
treated by chemical treatment followed by thermal is 
the best treatment in order to produce the reducing 
sugars as compared to the reversed pre-treatment 
technique.

BIOLOGICAL PRE-TREATMENTS

In comparison with the conventional chemical 
and physico-chemical pre-treatment methods, 
biological pre-treatment is considered as an 
efficient, environmentally safe method as it has 
no requirement for chemicals and needs only 
mild environmental conditions employed as well 
as low-energy process. Substrate specificity and 
simple process and equipment requirements are 
other advantages that have been reported (Kirk 
and Chang, 1981). Biological pre-treatments are 
carried out by microorganisms such as brown-rot 
fungi, white and soft-rot fungi as well as bacteria, 
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by lignin peroxidase (LiP) enzyme and manganese 
peroxidase (MnP) enzyme were recorded at 71.69% 
and 67.94%, respectively. The enzymatic treated 
OPEFB have resulted in higher bio-oil yield (30 
wt%) compared to the untreated sample (20 wt%). 
Nazlee et al. (2017) reported that it is possible to 
produce sugars from the cellulose of OPEFB fibre 
by enzymatic hydrolysis in membrane reactor. The 
cellulolytic complex enzyme commercially known 
as Celluclast 1.5L (Novozymes) when employed 
was able to increase productivity from 0.003 to 0.01 
g reducing sugars/FPU enzyme in batch reactor 
and enzymatic reactor. The reusability of cellulose 
enzyme was also reported up to 216 hr in enzymatic 
membrane reactor.

GREEN PRE-TREATMENT

A technology that reduces or eliminates the 
hazardous chemicals used as well as an application 
of safer solvent and safer reaction conditions 
would qualify it as a green treatment. The use 
of green technology to recover lignocellulosic 
chemicals from the OPB is to reduce environmental 
impact. The extraction of lignocellulosic chemicals 
using processes that employ less solvent at low 
concentration, less toxic and non-toxic feedstock 
selections in combination with physical treatments 
that are less energy intensive, are considered as 
green methods. In addition, ionic liquid, ozonolysis 
and hydrothermal pre-treatments also can be 
categorised as green methods as these methods 
eliminate the chemical usage.

Eco-friendly Reagents

Organic acids such as acetic acid and formic 
acid are eco-friendly reagents, less corrosive and 
effective for the pre-treatment of lignocellulosic 
biomass, and they provide a more stable medium 
for monosaccharide in the aqueous phase as 
compared to sulphuric acid (Marzialetti et al., 
2011). The application of low concentrations of 20% 
(v/v) formic acid and 10% (v/v) of 30% hydrogen 
peroxide at 85°C for the extraction of cellulose from 
OPEFB produced a total cellulose yield of 64% 
(w/w), which was among the highest ever reported 
(Nazir et al., 2013). The extraction of cellulose 
fibres from OPEFB by hydrogen peroxide with an 
ultrasound-assisted alkali extraction yields 49% 
of cellulose (Nazir et al., 2012). The utilisation of 
eco-friendly reagents as an alternative to acidified 
sodium chlorite for the delignification and the 
extraction of cellulose from OPEFB will reduce the 
environmental impacts of hazardous chemicals. 
Besides that, low concentration of chemicals is 
being used resulting in low operating cost and this 
also is one of the advantages associated with this 
treatment.

Ionic Liquids

Ionic liquids are new organic salts, which 
generally exist in a liquid state at ambient 
temperature due to their low melting points. 
Principally, useful characteristics such as high ionic 
conductivity, high solvation power, thermal stability, 
inflammability, low volatility confer the status 
‘green solvent’ on ionic acid for various chemical 
reactions in industrial processes (Rabemanolontsoa 
and Saka, 2016; Zhu et al., 2006; Heinze et al., 2005).

The development of a novel process that uses 
ionic liquid {1-butyl-3methylimidazolium chloride 
[(Bmim)Cl]} followed by alkaline treatment to 
extract cellulose from OPEFB fibre with 93% 
α-cellulose recovery has been reported (Norzita 
and Lani, 2014). The improvement in the properties 
of cellulose obtained was observed to be 63% 
crystallinity with thermal decomposition step 
occurred at 390°C. Thus, this process represents 
an efficient treatment in extracting cellulose with 
better properties and having the highest yield. 
In another study, the same types of ionic liquid; 
(Bmim)Cl  employed in the liquefaction process 
with sulphuric acid as a catalyst, managed to extract 
26.6% lignin from EFB. The utilisation of recycled 
ionic liquid in the process showed no significant 
reduction of lignin yield (Sidek et al., 2013). Tan et al. 
(2011) studied the optimisation of glucose recovery 
from OPF by subjecting the OPF into ionic liquid 
(Bmim)Cl prior to cellulose regeneration by an anti-
solvent. An optimum 100% glucose recovery was 
obtained with pre-treatment conditions of 80°C, 
a 15 min retention time and 10% solid loading 
by employing a response surface methodology. 
Mohd Basyaruddin et al. (2012) investigated the 
application of two different ionic liquids; namely 
1-butyl-3-methylimidazolium chloride/dimethyl 
sulphoxide and 1-ethyl-3-methylimidazolium 
chloride/dimethyl sulphoxide on the swelling and 
dissolution of OPB and cellulose fibre from OPEFB, 
OPF and OPT. These OPB fibres treated with ionic 
liquids showed homogeneous swelling without 
dissolution, whereas the cellulose fibre from these 
OPB has been attributed to the subsequent swelling 
and dissolution mechanisms of the fibre when 
subjected to the ionic liquids. Lignin extraction from 
OPB, namely OPEFB, OPT and OPF by dissolution in 
ionic liquid; 1-butyl-3-methylimidazolium chloride 
([bmim][Cl]) followed by precipitation in various 
precipitating agent was reported by Mohtar et al. 
(2015). The lignin from these OPB was successfully 
extracted by ionic liquid dissolution and non-toxic 
CO2 – aluminum potassium sulphate dodecahydrate 
[(AlK(SO4)2.12H2O] precipitation process with the 
highest lignin yield was observed for OPT.

Ionic liquids can be claimed to be potential 
solvents in dissolving cellulosic materials, and have 
high potential as one of the green routes towards 



A REVIEW ON EXTRACTION PROCESSES OF LIGNOCELLULOSIC CHEMICALS FROM OIL PALM BIOMASS 

519

volatile organic solvent replacement. Regardless of 
their promising chemical properties, ionic liquids 
present the drawback of being expensive and require 
tedious recycling and reuse, since their toxicity and 
biodegradability are not well understood (Kumar 
and Sharma, 2017; Rabemanolontsoa and Saka, 
2016).

Ozonolysis

Ozonolysis is an ozone treatment which is 
mainly used for reducing the lignin content of 
lignocellulosic biomass as it mainly degrades 
lignin, but negligibly affects hemicellulose and 
cellulose. The use of ozone treatment can be 
classified as a greener technology as this process 
produces no toxic residues and it is performed at 
ambient temperature and pressure (Kumar et al., 
2009). Also, it does not produce any toxic inhibitors, 
therefore it is environment-friendly and does not 
affect the post-treatment process such as enzymatic 
hydrolysis and yeast fermentations (Quesada et al., 
1999). This technique degrades most of the lignin 
and some of the hemicellulose, while leaving the 
cellulose intact. Some researchers conducted their 
research in this eco-friendly method with wheat 
straw (Ben and Miron, 1981), bagasse, green hay, 
peanut, pine (Neely, 1984) and poplar sawdust 
(Vidal and Molinier, 1988). However, a large amount 
of ozone utilisation in the treatment makes it an 
expensive process, and hence a less suitable option 
for pre-treatment at industrial scale (Kumar et al., 
2009). Not much work on ozonolysis treatment of 
OPB is reported in the literature. Wan Omar and 
Amin (2016) studied the optimisation of lignin 
degradation and total reducing sugar recovery from 
OPF by ozonolysis pre-treatment by manipulating 
several operating conditions such as OPF particle 
size, moisture content, reaction time, ozone flow 
rate as well as their interaction by employing a 
response surface methodology. The optimum lignin 
degradation and total reducing sugar recovery were 
achieved at 84.7% and 99.9%, respectively; with the 
levulinic acid production from the pre-treated OPF 
was comparable to that of commercial cellulose.

Hydrothermal Pre-treatment

A new emerging green technology known 
as hydrothermal treatments, commonly defined 
as reactions occurring under the conditions of 
high temperature and high pressure in aqueous 
solutions in a closed system (Rabemanolontsoa 
and Saka, 2016). The hydrothermal pre-treatment is 
widely applied on various lignocellulosic biomass 
to enhance their enzymatic digestibility as most 
of the hemicelluloses and partial lignin can be 
removed before the cellulose degrades under 
hydrothermal condition (Sun et al., 2016). The 

process temperatures are usually ranging from 
160ºC to 240ºC as the cellulose degradation normally 
occurs at a temperature higher than 240°C (Cao 
et al., 2014; Sun et al., 2014). The system only uses 
water and the hydronium ion from water ionisation 
acts as a catalyst in the reaction medium (Möller 
et al., 2011; Sabiha-Hanim et al., 2011). Due to that 
reason, this method, is recognised as one of the most 
promising and environmental-friendly biomass 
pre-treatment methods available to make the 
lignocellulosic biomass susceptible to a subsequent 
process for fermentable sugars production. The 
hydrothermal pre-treatment is categorised into the 
steam explosion, liquid hot water or also referred to  
as hot compressed water as well as supercritical/ 
subcritical water depending on the conditions of 
temperature and pressure involved (Kumar and 
Sharma, 2017; Rabemanolontsoa and Saka, 2016).

Zakaria et al. (2015a) studied the effect of 
varying temperature (170°C to 250°C) and time (10 
to 20 min) during hydrothermal pre-treatment in a 
batch tube reactor system on the glucose production 
from OPEFB and OPF fibre. Partial removal of 
hemicellulose and migration of lignin of treated 
samples resulting to expansion of the surface area and 
creation of pores for easy access to enzymes during 
enzymatic hydrolysis, thus enhancing the yield of 
glucose at 87.9% conversion from OPF fibre and 
100% conversion from OPEFB. In another study also 
carried out by Zakaria et al. (2014b), they reported 
that a combined pre-treatment using hydrothermal 
and ball milling on OPMF in the tube reactor could 
improve hemicellulose removal and delignification 
as well as reduction in the cellulose particle size 
and its crystallinity. The highest yield of xylose and 
glucose obtained in the enzymatic hydrolysis on the 
treated sample were recorded at 63.2% and 97.3%, 
respectively, which is the highest conversion from 
OPMF ever reported. Two different hydrothermal 
pre-treatments, namely SHS and HCW with a 
combination of wet disk milling (WDM) on OPMF 
were developed by Zakaria et al. (2015b). It was 
reported that the combination of HCW and WDM 
offered shorter milling cycles and lower power 
consumption with more than 98% of glucose yield. 
This eco-friendly combined pre-treatment is using 
hydrothermal and WDM to enhance the enzymatic 
efficiency of OPMF and claimed as the first to be 
reported. In an effort to overcome the difficulty 
of OPEFB degradation in a short period-time, 
hydrothermal pre-treatment has been developed 
under different reaction temperature (100ºC -250ºC), 
reaction time (10-40 min), solid to solvent ratio (1:10 
- 1:20 w/v) and particle size (0.15-1.00 mm). The 
highest yield of soluble sugars at 68.18 mg glucose 
per gram of OPEFB was obtained at 178ºC, 20 min 
reaction time, 1:15 w/v of solid to solvent ration for 
30 mm of particle size (Muhd Ali et al., 2016). A pre-
treatment of OPF using HCW to enhance glucose 
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