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ABSTRACT
Oil palm biomass wastes such as oil palm fronds (OPF), empty fruit bunches (EFB) and palm kernel shells 
(PKS) are amongst the most abundantly available agricultural residues in Malaysia. Of these, an average 
0.16 t PKS per tonne crude palm oil (CPO) is commonly used in palm oil mills as boiler fuel to generate 
steam and electricity, while the remaining unused 0.20 t PKS per tonne CPO are often sold as fuel. In order 
to diversify and add value to the remaining PKS, it is proposed to convert it into biochar to sequester CO2 
and improve the productivity of low-fertility soil. In this study, PKS was carbonised under allothermal 
conditions at various temperatures (400°C to 600°C) and residence times (30 and 60 min) using the biochar 
experimenters kit (BEK). Biochar yield decreased from 52.1 ± 15.5 wt% at 400°C (30 min) to 33.4 ± 1.4 
wt% at 600°C (60 min), while pH, elemental and fixed carbon content increased with temperature and 
residence time. The VM/FC (0.25 to 0.60) and O/C (0.12 – 0.23) ratios suggest that PKS biochar is an 
effective carbon sink with a half-life in soil > 100 years.
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PILOT SCALE BIOCHAR PRODUCTION FROM 
PALM KERNEL SHELL (PKS) IN A FIXED BED 

ALLOTHERMAL REACTOR

INTRODUCTION

Biomass is organic matter derived from living 
organisms with a renewed availability including 
agricultural wastes, wood/forestry residues, animal 
manure and municipal waste.  In Malaysia, oil palm 
biomass is one of the most abundant agricultural 
wastes generated (Mekhilef et al., 2011). The oil palm 
biomass is generally harnessed from: (1) upstream 
plantation (trunk and fronds) and (2) midstream 
palm oil milling (empty fruit bunches produced after 

fresh fruit bunches stripping, mesocarp fibre after 
oil screw processing and palm kernel shells - PKS 
- after nut cracking process) (Kong et al., 2014). In 
2014, about 4.46 million tonnes of PKS residues were 
produced which increased to 4.56 million tonnes 
(Wafti et al., 2017) in 2015 and 4.72 million tonnes in 
2016 (Loh, 2017). PKS has been used as a source of 
energy for combined heat and power generation in 
palm oil mills (Vijaya et al., 2008). However, based 
on a life cycle study of 12 mills by Vijaya et al. (2008), 
only approximately 45% of PKS is utilised with the 
remainder sold as fuel to external parties. Owing to 
the high lignin and fixed carbon content of original 
PKS (Abnisa et al., 2011; Choi et al., 2015) conversion 
of PKS to carbon-negative biochar appears to be a 
promising alternative. Many studies have found 
that biochar can mitigate global warming (Shepherd 
et al., 2009; Woolf et al., 2010), help plants to access 
more nutrients through physico-chemical processes 
that allow for the better utilisation of ‘soil inherited’ 
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or ‘fertiliser-derived’ nutrients (Sohi et al., 2009), 
improve soil pH and permeability of loamy soils 
(Martinsen et al., 2014). 

Over many centuries, charcoal has been 
made using various forms of earth kilns for 
metallurgical, cooking, heating and medical 
applications (Kortzfleisch, 2009). However, the 
traditional charcoal production technology releases 
condensable and non-condensable gases into the 
environment causing health concern. Modern 
biochar production technology must meet stringent 
emission criteria while producing high-quality, 
stable biochar at an affordable price. Several 
technologies have been proposed over the past 
decade such as top-lit updraft gasifiers (Nsamba 
et al., 2015), Kon-Tiki earth kiln (Cornelissen et 
al., 2016), improved retort kiln (Adam, 2009) and 
the biochar experimenter kit (BEK) (Boateng 
and Mullen, 2013). The BEK is a unit that can be 
operated in various modes enabling researchers 
and practitioners to produce and characterise 
biochar under allothermal, autothermal, batch and 
continuous operation conditions. Autothermal may 
be defined as a process in which heat is generated 
from reactions within the reactor to support 
endothermic pyrolytic processes while allothermal 
refers to heat that is produced outside the reactor 
and transferred through a wall into the interior of 
the reactor to drive endothermic reactions (Karellas, 
2015; Nsamba, et al., 2015; Rauch, et al., 2014; Stiller 
and Hochrinner, 2016). The flexible platform of 

the BEK enables researchers to report comparable 
yields in contrast to highly customised reactor types 
currently used (Table 1). Apart from that, the BEK is 
relatively easy to operate as it can feed the original 
form of granular biomass such as PKS and therefore 
potentially save time, energy and cost. The quantity 
produced is also sufficient to conduct nursery and 
field trials compared to laboratory-scale pyrolysis 
reactor (Table 1).

Table 2 summarises the various process 
conditions used for the production of biochar. 
Generally, the generation of solid, liquid and gaseous 
products from biomass pyrolysis primarily depends 
on the feedstock used as well as operating conditions 
such as temperature, heating rate, residence time 
and oxidising agent (Shafizadeh, 1982). The biochar 
yield under a slow pyrolysis condition is higher 
than in fast pyrolysis which produces mainly bio-
oil. Most studies used laboratory-scale fixed bed 
reactors at temperatures ranging from 400°C to 
800°C with a PKS biochar yield of 23 to 39 wt%. 
Only one study is available in which PKS biochar 
was produced at pilot-scale conducted at one 
temperature and holding time (Kong et al., 2013). 

This study therefore aims to investigate the 
effect of pyrolysis temperature and residence time 
on biochar and bio-oil yields at pilot-scale under 
fixed-bed allothermal conditions using the BEK and 
as-received PKS. In addition, the physico-chemical 
properties of biochar were determine and the 
potential for soil application discussed. 

TABLE 1. REACTOR TYPE AND PROCESS CONDITIONS USED FOR CARBONISING PALM KERNEL SHELL (PKS) 

Reactor type Capacity Particle  Temperature Residence  Biochar Bio-oil  Reference
  size (mm) (°C)  time yield  yield (wt%)
    (min) (wt%, dwb)  

Fluidised-bed au 0.3-2 kg feed 1-2 479 – 555 30 – 197 21 – 23 50-53 Choi et al.  
       (2015)
Fixed bed al 20 kg As received 400 60 29 NR Kong et al.  
       (2013)
Fixed bed al 0.15 kg 1.7-2.0 400 – 800 60 24 – 35 36 - 46 Abnisa et al.  
       (2011)
Fluidized-bed au 0.94 kg hr-1 0.125-1.400 478 NR 23 52 Kim et al.  
       (2014)
Fixed bed au 0.1-0.4 10-20 500 60 32 51 Lee et al.  
       (2013)
Fixed bed al 0.5 As received 400 – 800 55 – 167 31 – 39 NR Titiladunayo  
       et al. (2012)

Note: au - autothermal; al - allothermal; NR - not reported; dwb - dry weight basis.

TABLE 2. BIOMASS PYROLYSIS BASED ON THREE DIFFERENT CONDITIONS 

Pyrolysis mode Temperature  Vapour  Liquid yield  Gas yield  Char yield  
 (°C) residence time (wt%) (wt%) (wt%)

Fast 500 1-2 s 60-75 13-20 12-20
Intermediate 500 5-30 s 40-50 25 25-30
Slow 400 hr-days 25-30 25-35 30-40

Source: Kantarelis et al. (2013).
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MATERIALS AND METHODS

Sample Preparation

PKS (Figure 1) was obtained from Sime Darby 
Palm Oil Mill in Labu, Negeri Sembilan, Malaysia. 
Prior to biochar production, the collected PKS was 
air-dried by spreading on a rain-sheltered concrete 
floor for a few days followed by drying in an oven 
at 103°C until the moisture content was <10 wt %. 

 
Experimental Procedures

The BEK, a multi-mode manual pyrolysis 
machine supplied by All Power Labs (USA) was 
used to produce biochar from PKS with bio-oil as 
a side product (Figure 2). It consists of a cylindrical 
reactor and two cylindrical hoppers; one for feeding 
the biomass to the reactor, and the other for collecting 

the biochar. There are several pyrolysis modes 
available, i.e. bypass mode, retort mode and sweep 
gas mode. In this study, the bypass mode (Figure 
3a) was used during start up burning propane gas 
to heat up the PKS (20 kg) in the reactor. Once the 
reactor reached 100°C, the heat was generated by 
burning the syngas released from pyrolysing PKS 
using retort mode (Figure 3b). 

Figure 1. Raw palm kernel shell (PKS) from palm oil mill. Figure 2. The biochar experimenter’s kit (BEK); white arrows for bypass 
mode and black arrows for retort mode (outer layer of the reactor).

Figure 3. (a) Bypass mode layout and (b) retort mode.
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used. The proximate analysis was carried out by 
thermal gravimetric analysis (TGA) (Leco TGA 701) 
according to ASTM D5142. Calorific value (CV) of 
biochar was determined with a bomb calorimeter 
(Leco AC-600) according to ASTM D5865-07. 
Ultimate analysis was done using a CHNS analyser 
(Leco 628) according to ASTM D5373, and the oxygen 
(O) content calculated by difference (Equation 3; 
Titiladunayo et al., 2012). The raw PKS was analysed 
in a similar manner. 

 O(wt%)=100-C(wt%)-H(wt%)-N(wt%)-S(wt%)-Ash(wt%)                 
                                Equation (3)

RESULTS & DISCUSSION

Biochar and Bio-oil Yield

The PKS pyrolysis product distribution (Figure 
4) was found to range from 33 - 52 wt% (dwb) for 
biochar (Figure 5), 1 - 5 wt% (dwb) for bio-oil and 
43 - 64 wt% (dwb) for pyrogases. Results generally 
show a decrease in biochar yield with temperature 
and residence time which agrees with literature 
cited in Table 2. The relatively higher yields of 
biochar at lower temperature (400°C) are attributed 
to the thermal breakdown resistance of lignin (Ma 
et al., 2015). Comparing the PKS biochar yield with 
yields from other biomasses under similar process 
conditions it can be seen that PKS biochar yield is 
greater (Lee et al., 2013; Titiladunayo et al., 2012). 
According to Lehmann et al. (2006), Thomsen et al. 
(2011) and Kong et al. (2014), lignin is an important 
factor for biochar production. Several authors 
reported a PKS lignin content ranging from 44 wt% 
(Abnisa et al., 2013) to 50 wt% (Loh, 2017) which are 

Two pyrolysis parameters were monitored, i.e. 
temperature (400°C to 600°C) and residence time 
(30 and 60 min). All experiments were performed 
in triplicate in batch mode and results presented as 
mean values. The biochar produced was collected 
from the second hopper (No. 8, Figure 3b), then 
cooled overnight prior to physico-chemical analyses. 
Bio-oil was collected from the condenser unit at the 
end of the run using a pre-weight glass beaker.

The biochar yield was calculated using Equation 
(1):

Biochar yield (wt%) =                           Equation (1)

where W0 is the dry weight of raw PKS (kg), and 
Wbc is the weight of biochar produced (kg).

                                                                                          
The bio-oil yield was calculated using Equation 

(2):

Bio-oil yield (wt%) =                         Equation (2)

where W0 is the dry weight of raw PKS (kg), and 
Wbo is the weight of bio-oil (kg) collected from the 
condenser.

Physico-chemical Characterisation of PKS and 
Biochar

Prior to characterisation, the biochar samples 
were ground using a Dickson AFY-300 grinder and 
used as it was for analysis. For pH determination, 
Enders et al. (2012) protocol was followed using a 
calibrated pH meter (BP3001 Trans Instruments). 
However, instead of 1 M KCl, deionised water was 

Figure 4. Palm kernel shell (PKS) pyrolysis product yield distribution at different temperature and residence times.
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amongst the highest values found in plant biomass 
(Mohan et al., 2006). Although the crystallinity 
of cellulose also plays an important role, lignin 
possesses a more complex, aromatic structure that 
resists volatilisation and thus facilitates biochar 
formation. 

The relatively low bio-oil yields (Figure 4) may 
be attributed to the condenser temperature which 
appears to be >100°C thus primarily collecting high 
molecular weight, organic condensable substances 
and less water.  Sukiran et al. (2009) also reported 
that the amount of water in the bio-oil is a function 
of the gas leaving the collector as well as the extent 
of secondary reaction or cracking reactions in 
the reactor. The presence of water can affect the 
physical, chemical and combustion properties of 
the bio-oil (Ibrahim et al., 2012), where a high water 
content reduces the calorific value but improves 
viscosity and stability (Sukiran et al., 2009).  In 
laboratory-scale studies where bio-oil was collected 
at temperatures close to 0°C, the oil yield was 52 
wt% while the water content constituted 42 wt% 
of the bio-oil (Kim et al., 2013). According to Wang 
(2013), fresh bio-oil generally appears in one phase 
however long-term storage can cause its separation 
into two phases as the heavier substances segregate 
and deposit at the bottom. In this study, we found 

that the bio-oil appeared as a single phase even after 
long-term storage. The physical appearance of bio-
oil PKS was dark-brown, viscous, yet free-flowing 
liquid with a pungent coal odour.  

Physico-chemical Characteristics of PKS and PKS 
Biochar

Results from the proximate and ultimate 
analyses of PKS and its biochar produced at 
different temperatures and residence time are 
summarised in Tables 3 and 4. Proximate results 
for raw PKS are in agreement with Kawser and 
Ani (2000) and Ma et al. (2015) who reported 
very similar values. Compared to its raw form, 
pyrolysis enhanced fixed carbon (FC), ash 
content and carbon content of PKS by factors of 
2.4 - 3.2, 1.7 – 4.7 and 1.2 – 1.5, respectively. The 
volatile matter (VM) of PKS biochar (20-39 wt%) 
was lower than the raw PKS (71 wt%). Increasing 
the pyrolysis temperature caused a significant 
loss of VM content in the biomass due to the 
decomposition of hemicellulose, cellulose and 
lignin components, respectively (Thangalazhy-
Gopakumar et al., 2010; Mukherjee et al., 2011; 
Rafiq et al., 2016). The VM/FC ratio of raw PKS was 
3.18 while for PKS-biochar the ratios decreased 
with increasing temperature and residence time 
(Table 3). Similar trends were reported by Lee et 
al. (2013) for raw (3.73) and pyrolysed PKS (0.15). 
According to Amonette et al. (2010) and Novak 
and Busscher (2013), a VM/FC ratio of < 1.0 is 
indicative of a good biochar stability in the soil 
suitable for carbon sequestration suggesting that 
all PKS biochars produced with the BEK meet 
this criterion and can therefore be considered as a 
suitable carbon sink.  

The elemental composition of raw and PKS 
biochar as well as pH are provided in Table 4. The 
pH of biochar is an important parameter in biochar-
soil interactions associated with nutrients mobility 
(Gomez-Eyles et al., 2013). The pH of PKS biochar 
ranged from pHH2O 6.7 to 7.8 and increased as 
temperature and residence time increased. The 
pH in this study was similar to values reported by 

Figure 5. Fully carbonised palm kernel shell (PKS) biochar.

TABLE 3. PROXIMATE ANALYSIS OF PALM KERNEL SHELL (PKS) AND PKS BIOCHAR

Properties Unit Raw    PKS Biochar
  PKS  30 min   60 min

Temperature °C - 400 500 600 400 500 600
Calorific value MJ kg-1 19.5±0.6 26.7±2.8 25.1±5.1 29.9±0.6 29.0±0.3 27.9±0.21 28.3±1.2
Moisture content wt%  4.86±1.29 2.20±0.08 3.00±0.04 4.07±0.18 2.46±0.07 3.26±0.16 3.80±0.08
Volatile matter (VM)* wt%  70.7±2.0 38.6±1.1 34.6±1.7 22.8±2.5 31.6±0.5 25.2±0.8 20.0±5.3
Ash content* wt%  2.17±0.59 6.07±0.88 3.73±0.34 5.12±0.63 6.23±0.62 10.3±5.2 5.28±0.29
Fixed carbon (FC)* wt%  22.2±2.2  53.2±1.8 58.7±1.8 68.0±2.3 59.7±0.9 61.3±4.7 70.9±0.4
VM/FC - 3.18 0.73 0.59 0.34 0.54 0.41 0.28

Note: ± SD - standard deviation; * dwb - dry weight basis.
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form cyclic amides such as 2,5-diketopiperazine 
(DKP) (Hansson et al. 2003; Becidan et al., 2007; 
Liu et al., 2017) which lock up N at temperatures 
below 400°C. However, as pyrolysis temperature 
increases, N content in pyrolysed PKS decreased 
(Table 4) probably due to the decomposition of DKP 
and glycosylamine resulting in the formation and 
release of HCN, HNCO and NH3 (Hansson et al., 
2003; Becidan et al., 2007; Liu et al., 2017).  Although 
major and trace nutrients in PKS and PKS biochar 
were not analysed in this study, Loh (2017) showed 
that PKS can be potentially used as animal feed 
ingredient and soil amendment (Loh et al., 2013). It 
can therefore be anticipated that the derived PKS 
biochar will also inherit these properties.

The H/C and O/C molar ratios are important 
indicators of the presence of polar functional 
groups, hydrophilic nature of the surface (Chen 
et al., 2008; Kearns et al., 2014) as well as biochar’s 
stability (Spokas, 2010). The H/C ratio of raw PKS 
was found to be 2.02 while ratios of 1.36 to 1.47 
were reported by numerous authors (Kawser and 
Ani, 2000; Asadullah et al., 2013; Asadieraghi and 
Wan Daud 2014; Ma et al., 2015). Raw PKS had an 
O/C ratio of 0.61 which agrees well with literature 
values ranging from 0.513 to 0.818 (Kawser and Ani, 
2000; Asadullah et al. 2013; Asadieraghi and Wan 
Daud 2014; Ma et al., 2015).  The H/C molar ratio 
of PKS biochar ranged from 0.52 and 0.97, while the 
O/C ratio varied between 0.12 and 0.23 (Table 3). 
H/C and O/C ratios of < 0.7 and < 0.4 respectively 
indicate a good degree of carbonisation of biochar 
(Kuhlbusch, 1995; Zheng et al., 2010; Kung et al., 
2013) and its suitability for biochar-soil interaction 
(Camps-Arbestain et al., 2015; IBI, 2015).  The H/C 
and O/C ratios decreased as pyrolysis temperature 
increased (Krull et al., 2009; Spokas 2010; Enders et 
al., 2012). According to Spokas (2010), biochars with 
an O/C ratio of < 0.2 can attain half-life > 1000 years 
while O/C ratio > 0.6 have an estimated half-life 
of < 100 years.  Therefore, it shows that O/C ratio 
of PKS biochars reported here have an expected 

Kong et al. (2013) who found that the value of PKS 
biochar at 400°C was pHH2O 6.9, and Lee et al. (2013) 
reported a pHH2O 6.99 at a temperature of 500°C. 
Biochars (pHbiochar >> psoil) are known to increase soil 
pH which helps to alleviate aluminum root stress 
(Manickam et al., 2015). The PKS biochar with the 
highest C content (74.2 wt%) was obtained at 500°C 
for 30 min reaction. The H and O contents of PKS 
decreased during pyrolysis probably caused by 
dehydration and decarboxylation reactions (Li et al., 
2007; Jindo et al., 2014; Yu et al., 2016). In addition, 
aromatisation and the formation of light molecular 
weight hydrocarbons during pyrolysis could also 
reduce the H content (Kim et al., 2010; Mantilla et 
al., 2014). 

The sulphur (S) content in raw and pyrolysed 
PKS was below the detection limit, while nitrogen 
content was found to range from 0.17 wt% in raw to 
0.77 wt% in pyrolysed PKS. The low concentrations 
of S and nitrogen (N) content in PKS is a common 
feature of ligno-cellulosic material due to a lack of 
proteins in non-reproductive plant components 
while animal residues have a typical S and N content 
of 2.3 wt% and 12 wt%, respectively (Vassilev et 
al., 2010). Sulphur content in PKS was reported in 
literature to vary from below detection limit (BDL) 
(Kawser and Farid, 2000), 0.04 wt% (Asadullah et 
al., 2013), 0.1 wt% (Ma et al., 2015) and 0.38 wt% 
(Asadieraghi and Wan Daud, 2014). Increased levels 
of inorganic S in plants is indicative of cultivation 
on acid sulphate soils, soil contamination with 
sulphur due to acid rain or excessive sulphur 
fertilisation requiring the plants in all cases to store 
S compounds such as SO4 and sulphate esters in 
plant fluids and vacuoles (Knudsen et al., 2004). The 
N content ranged from 0.37 wt% (Kawser and Farid, 
2000) to 0.76 wt% (Asadieraghi and Wan Daud, 
2014) and was found to be greater in pyrolysed 
PKS arguably due to pre-concentration effects 
caused by the volatilisation of hemicellulose and 
cellulose while proteins either react with cellulose 
to form glycosylamines (Maillard reaction) or 

TABLE 4. ULTIMATE ANALYSIS OF PALM KERNEL SHELL (PKS) AND PKS-BIOCHAR

Properties Unit PKS   Biochar

     30 min   60 min

Temperature °C - 400 500 600 400 500 600
 pH - 6.28±0.08 6.63±0.05 6.89±0.15 7.30±0.20 6.65±0.01 7.08±0.02 7.75±0.23
 C wt%  49.2±0.2 67.4±2.4 74.2±0.3 72.8±2.8 72.5±0.5 66.3±0.6 61.0±1.2
 H wt%  8.26±0.06 4.21±0.05 4.71±0.02 3.18±0.04 3.90±0.02 4.49±0.11 4.93±0.07
 N wt%  0.17±0.03 0.64±0.01 0.72±0.01 0.77±0.02 0.73±0.01 0.43±0.01 0.37±0.02
 S wt%  BDL BDL BDL BDL BDL BDL BDL
 O wt%  39.7±2.3 21.8±0.7 16.6±0.2 18.1±0.04 16.7±0.3 18.6±0.2 28.5±0.1
C/N (molar) - 332 123 120 110 117 182 195
H/C (molar) - 2.02 0.75 0.76 0.52 0.65 0.81 0.97
O/C (molar) - 0.61 0.23 0.15 0.17 0.16 0.15 0.12

Note:  ± SD - standard deviation; BDL - below detection limit of the method used.
 C - carbon.       O - oxygen.       S - sulphur.       H - hydrogen.       N - nitrogen.
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