Palm Kernel Shell Biochar Production, Characteristics and Carbon Sequestration Potential

Sieng-Huat Kong*; Soh Kheang Loh**; Robert Thomas Bachmann‡; Haryati Zainal** and Kah Yein Cheong*

Abstract

Properties of palm kernel shell (PKS) biochar were studied to identify its potential for soil amendment and carbon sequestration. In this study, slow pyrolysis of PKS was conducted using the Biochar Experimenters Kit at final temperatures 400°C - 600°C and holding times 30 - 90 min with a heating rate of 7.3 ± 0.6°C min⁻¹. Samples were characterised using CHNS/O analyser, Brunauer-Emmet-Teller (BET), leaching column for cation exchange capacity (CEC), energy dispersive X-ray (EDX) and Fourier transform infrared (FTIR) spectrometers. The C content increased from 46 wt.% to 73 wt.% after pyrolysis, while hydrogen (H) and oxygen (O) contents decreased due to dehydration, decarboxylation and demethanation. The molar H/C and O/C ratios of PKS biochar ranged from 0.32-0.54 and 0.08-0.21, respectively, suggesting high stability in soil. PKS biochar at 500°C (90 min) exhibited the greatest carbon sequestration potential of 0.63 kgCO₂/kg PKS. The pH was between 9.3 to 12.0, while CEC increased from 3.00 to 4.44 cmol kg⁻¹ only for biochar at 400°C (60 min). The BET surface area and total pore volume increased from 106 m² g⁻¹ and 0.01 cm³ g⁻¹ (raw) to 329 m² g⁻¹ and 0.31 cm³ g⁻¹ (biochar) at 600°C (60 min) whereas water holding capacity increased from 2.23 g(H₂O)/10 g to 6.21 g(H₂O)/10 g at 500°C (30 min), respectively. Plant nutrients were retained in PKS biochar (400°C and 500°C). PKS biochar can potentially sequester carbon and improve nutrient and water retention in acidic low-fertility soils.

Keywords: biochar, palm kernel shell, pyrolysis, carbon sequestration, soil application.

Date received: 1 April 2019; Sent for revision: 1 April 2019; Received in final form: 31 July 2019; Accepted: 1 August 2019.

Introduction

To date, conversion of oil palm biomass into biochar, a carbon-rich product obtained from thermal decomposition of biomass under limited or no supply of oxygen, has drawn considerable attention from the scientific community for two reasons; to enhance and diversify the abundantly available biomass residues and to identify its potential in mitigating greenhouse gas (GHG) emissions via soil amendment. However, the long-term effects of biochar on carbon sequestration, soil fertility and environmental remediation are highly dependent on its physico-chemical properties (Spokas et al., 2009; Ahmad et al., 2014).

The specific properties of biochar materials are influenced by the feedstock and thermo-chemical process used which in turn change the soil nutrients, water and carbon availability (Karaosmanoglu et al.,
Biochar application to various types of soil has been reported causing either neutral, beneficial or in isolated cases detrimental effects on plants growth (Kong et al., 2014; Galinato et al., 2011; Liu et al., 2013). Among the reported benefits, the crucial ones include an increased water holding capacity, improved nutrient retention and availability, and a reduced nutrient loss from leaching (Karhu et al., 2011; Mollinedo et al., 2015). Equally important, biochar can store C for centuries due to its strong resistance to biological decomposition (Preston and Schmidt, 2006; Liang et al., 2008; Van Zwieten et al., 2009). A weighted meta-analysis of 103 studies revealed that biochar soil amendment induced a greater crop response in pot experiments (9.0% on average) than in field (11.0%), in acid (30%, pH < 5.0) than in quasi-neutral soils (< 15%, pH > 5.0), in sandy textured (29.3%) and clay (15.7%) than in loam and silt (6.8%) soils, in dry land crops (10.6%) than for paddy rice (5.6%), while acidic biochars had an overall negative effect on crop productivity (Liu et al., 2013). From their analysis, the authors suggested that the observed crop response was mainly due to a combination of liming and aggregating/moistening effect of biochar soil amendment.

Previous studies have shown that the composition and surface chemistry of biochars are highly uncertain and subject to operating conditions (Usman et al., 2015; Zhang et al., 2015; Rafiq et al., 2016). In particular, an increase in the process temperature not only improves the biochar adsorption properties such as surface area and porosity, but also increases the pH value for liming effects (Jindo et al., 2014; Gai et al., 2014). It is important to note that the employed pyrolysis temperature could volatilise some elements such as N and S, but C, P, Mg, and Ca would be partially or fully retained and concentrated in the resulting biochar (Bridle and Pritchard, 2004). Compared to pyrolysis temperature, holding time has a relatively minor effect on the properties changes especially for smaller particles (Zhang et al., 2015; Li et al., 2015; Shaaban et al., 2014).

Solid oil palm biomass residues are generated throughout the year in palm oil mills and oil palm plantations. One of them, palm kernel shell (PKS), has the highest commercial utilisation value. PKS was chosen as a feedstock for this study due to its high lignin content (47.3%-50.7%) which is essential for thermal conversion into biochar (Choi et al., 2015; Katoki et al., 2015; Loh, 2017). Its particle size of about 1.5 cm is suitable to be loaded directly into any design of pyrolysis reactor without further downsizing and pre-treatment.

Various types of PKS biochar were produced under different process parameters and experimental set-up. Previously, PKS torrefied at 240°C-280°C and 30, 60 and 90 min has shown a greater temperature effect than holding time in the biomass-to-biochar conversion process (Jaafar and Ahmad, 2011). PKS gasified at high temperature (650°C-800°C) has shown ~81% carbon content which is convincing as a soil amendment material for carbon sequestration (Mahmood et al., 2015). PKS pyrolysed in a pilot-scale fixed-bed reactor under allothermal conditions was found to be a potentially suitable carbon sink as was evidenced by the high carbon content (up to 74 wt.%) and stability (in terms of volatile matter vs. fixed carbon, H/C and O/C) (Haryati et al., 2018). The surface area of the most recently studied microwave-pyrolysed PKS increases with increasing temperature from 300°C to 700°C in a porcelain reactor, while H/C and O/C ratios decrease showing greater stability of the biochar in storing carbon (Kong et al., 2019). These studies, however, have only managed to show a general trend on biochar soil amendment properties affected by temperature and holding time, but lacking in detailing how these two process parameters might impart on the char’s carbon sequestration potential. This study aims to investigate the influence of pyrolysis temperature and holding time on the physico-chemical characteristics of PKS. The resulting PKS biochar’s suitability as a carbon sink and for soil amendment was assessed by estimating its carbon sequestration potential (CSP).

MATERIALS AND METHODS

Sample Preparation

The PKS was collected in bulk from Sime Darby Palm Oil Mill located in Labu, Negeri Sembilan, Malaysia. The PKS was spread and air-dried at ambient temperature under a covered area for a week. Before being filled into the biomass hopper for pyrolysis, the PKS was manually screened for pebbles and other foreign objects.

Production of Biochar

Pyrolysis of PKS was carried out using the Biochar Experimenters Kit (BEK) from All Power Labs, California (USA) according to Haryati et al. (2018). Two series of experiments were conducted focusing on the effects of final pyrolysis temperature and holding time on the physico-chemical properties of biochar produced. The first series of experiments performed at 400°C, 500°C and 600°C for a fixed holding time of 60 min produced biochar coded as BC400 (60 min), BC500 (60 min) and BC600 (60 min). The biochar from the second series of experiments at three different pyrolysis holding times (30, 60 and 90 min) at a fixed temperature of 500°C were coded BC500 (30 min), BC500 (60 min) and BC500 (90 min). The pyrolysis temperature increased gradually to the desired value (designated as final
pyrolysis temperature), and then was held for the required period (designated as holding time). A thermocouple (RS Pro Type-K) with data logger on top of the reactor was used to measure the temperature inside the reactor (Haryati et al., 2018).

Characterisation of PKS and Biochar

Both the feedstock and PKS biochar were ground for 90 s using an automatic electric grinder (Dickson DFY-300). The samples were then mixed and homogenised for further analysis. All samples were kept air tight inside plastic sample bottles and stored in a cool and dry cabinet. The total carbon (C), hydrogen (H), nitrogen (N) and sulphur (S) content were measured by a CHNS analyser (Leco CHNS 628 Series) in accordance with ASTM D 5373. The oxygen (O) content was calculated by subtracting the weight percentage between all the elements plus ash from the total of 100%. Prior to the analysis, the samples were dried in an oven at 105°C for 15 hr. The molar ratios (O/C and H/C) were calculated based on the measured C, H and O contents. Energy dispersive X-ray (EDX) spectroscopy was performed at an accelerating voltage of 20 kV using an Oxford INCA X-max detector. The uncoated sample was mounted on a scanning electron microscopy (SEM) stub using double-sided carbon tape and investigated for elemental composition by conducting 2D analyses of six particles per biochar type.

The pH values of all samples were measured using a calibrated pH meter (Eutech Instruments, pH tutor) at 1:10 (w/v) sample to deionised water ratio after the mixture of solution was shaken at 100 rpm and allowed to reach equilibrium for 2 hr (EPA Method 9045D). The electrode was directly dipped into the solution and the reading was recorded as pH of the sample. The cation exchange capacity (CEC) was determined to estimate the biochar ability to attract, retain and exchange cations based on method proposed by Soda et al. (2006) using 1 M ammonium acetate (NH$_4$OAc) at pH 7. The total amount of NH$_4^+$ retained by the biochar (after washing and leaching) was determined via titration (Loh et al., 2015) and regarded as an estimate of the CEC.

The chemical functional groups and bonds of the biochar were identified with a Fourier transform infrared (FTIR) spectrometer (Perkin-Elmer Spectrum 100) via KBr disc method. The biochar sample was first mixed with oven-dried KBr, followed by pressurising using a hydraulic press at 8 to 10 t of pressure for 3 to 5 min before subjecting to FTIR analysis. The FTIR spectra were recorded in the range of 4000-500 cm$^{-1}$ at a resolution of 4 cm$^{-1}$ with 16 scans.

The Brunauer-Emmet-Teller (BET) surface area and total pore volume of the PKS and PKS biochar were measured via nitrogen adsorption-desorption isotherms at -196°C using an accelerated surface area and porosimetry system (ASAP 2010, Micromeritics USA). The BET surface area was calculated in m2 g$^{-1}$ using the adsorption data in the relative pressure range from 0.05 to 0.25. The total pore volume was determined by converting the amount of nitrogen gas adsorbed, in cm3 g$^{-1}$ at S.T.P, at relative pressure of 0.98 to the volume of liquid adsorbate. The water holding capacity was calculated as g g$^{-1}$ water held in 10 g of biochar sample on dry weight basis (d.w.b.). Biochar samples were dried at 105°C for 15 hr and placed inside the funnels containing filter paper. Deionised water was dripped into the funnels at a fixed rate for 15 min. After the biochar samples were completely immersed in water, excess water was drained off through the bottom of the funnel (Saarnio et al., 2013). Prior to the experiments, a blank run (without biochar sample) was conducted in order to find out the weight of the wet filter paper inside the funnel.

Carbon Sequestration Potential (CSP)

The CSP of PKS biochar was estimated on a one-hundred-year basis. Equation (1) derived from Budai et al. (2013) was used to predict the CSP (kgCO$_2$/kg biomass).

$$\text{CSP} = \frac{\text{BC}_{100}}{100\%} \times Y_c \times \frac{44}{12}$$ \hspace{1cm} \text{Equation (1)}

where BC_{100} is the organic C biochar projected to remain in the soil after 100 years (d.w.b.) [wt.%], and Y_c is the organic C yield (d.w.b.) [g$_{\text{organic carbon}}$/g$_{\text{biomass}}$].

Budai et al. (2013) reported the BC$_{100}$ parameter to be a linear function of the H/C$_{\text{org}}$ ratio [Equation (2)] valid for H/C_{org} ratios ≤ 0.7. In Equation (2), C$_{\text{org}}$ is the organic C content.

$$\text{BC}_{100} (\%) = -74.3 \times \frac{H}{C_{\text{org}}} + 110.2$$ \hspace{1cm} \text{Equation (2)}

Since the inorganic C fraction in low-ash biochars is negligible (Enders et al., 2012), the C$_{\text{org}}$ of PKS biochars was assumed to be equivalent to the total carbon as determined by ultimate analysis.

RESULTS AND DISCUSSION

Several parameters need to be considered when conducting pyrolysis experiments. One concern is temperature range of the reactor used to produce biochar. The temperature range depends not only on the components used (e.g. stainless steel vs. mild
but also health and safety concerns. Another aspect is related to the feedstock properties. From previous thermogravimetric analysis (TGA) studies (Ma et al., 2017; 2019), it is known that hemicellulose and cellulose decompose at temperatures between ~250°C and ~400°C while lignin decomposes over a wider temperature range. In order to ensure that the least stable biomass components (hemicellulose and cellulose) are decomposed, 400°C was selected as the lowest temperature while 600°C was the upper limit of the BEK reactor at which we could safely operate. Thus, 500°C was selected as the centre point to further investigate the effect of holding time (on biochar-relevant physico-chemical characteristics and CSP).

Elemental Composition

The elemental composition of the raw and pyrolysed PKS (d.w.b.) are presented in Figure 1. The C content increased while that of H, O and S decreased with increasing temperature. The high content of C (71.1 ± 0.1 wt.% to 73.1 ± 0.3 wt.%) showed a > 50 wt.% biomass-to-biochar conversion rate by BEK at 400°C suggesting that the conversion of the main constituents, i.e. hemicellulose, cellulose and lignin to volatiles and aromatic carbon is almost complete at 60 min holding time.

A decline in H (25%) and O (42%) content with higher pyrolysis temperatures was observed (Figure 1) which could be due to the breaking of oxygen-containing functional groups (such as carboxyl, carbonyl and methoxyl) from their polymeric backbone (Ma et al., 2017) as well as formation of highly carbonaceous, aromatic compounds (Imam and Capareda, 2012; Demirbas, 2004). As for N and S, their presence in the raw PKS itself were already very low (< 1 wt.%) in the case of N or below the detection limit for S (Haryati et al., 2018), decreasing further in the produced biochar. Similar findings have been reported by Ma et al. (2017) who pyrolysed PKS in a quartz tube furnace at 250°C to 750°C for 1 hr.

The effect of holding time on the PKS biochar elemental contents (C, H and O) was less pronounced and revealed that the H/C ratio decreased from 0.51 for BC500 (30 min) to 0.32 for BC500 (90 min) (Figure 2).

In Haryati et al. (2018), we anticipated that PKS biochar will inherit micro- and macro-nutrients beneficial as a feed material and for soil amendment. In this study, in addition to the overall elemental content of PKS and its pyrolysed form, EDX was deployed to identify the elemental composition of BC400, BC500 and BC600 surfaces (Figure 3). C and O were always detected and the most abundant elements. The most frequent minerals present were Ca, K and Si followed by Al. Iron (Fe) was occasionally observed on BC400 (60 min), while Mg was sometimes found on BC500 (60 min). Phosphorus (P) started to appear in BC500 (60 min). S, N, Cl and Na were always below the detection limit (~0.1 wt.%). C increased from 71.6 wt.%, BC400 (60 min) to 87.2 wt.%, BC500 (60 min) (p = 0.167) while O decreased from 20.2 wt.%, BC400 (60 min) to 8.3 wt.%, BC500 (60 min) (p = 0.059) which agrees with the trend reported in Figure 1.

Ca content increased by a factor of 5 from 0.6 wt.% (BC400, 60 min) to 2.8 wt.% (BC500, 60 min) (p = 0.068), while K almost doubled from 0.29 wt.%
(BC400, 60 min) to 0.59 wt.% (BC500, 90 min) (p = 0.022). Alkali and alkaline earth metals K, Ca and Mg are valuable macronutrients for plants and appeared to be retained in BC400 (60 min) and BC500 (60 min). This agrees with Liu et al. (2017) who reviewed the fate of organic and inorganic elements during pyrolysis. The authors reported that Ca and Mg are more likely retained in the biochar phase than Na and K, while temperatures >600°C, high heating as well as gas flow rates promote the release of these metals from biomass during pyrolysis. Since pyrolysis temperature studied was between 400°C and 600°C plus heating rate was slow with no forced gas flow through the BEK reactor, it suggests that alkali and alkaline earth metals were mainly retained within the PKS biochars at investigated conditions.

S is taken up by plants as sulphate, transported to stems and leaves, reduced to sulphide and incorporated into amino acid cysteine. This process occurs continuously in plants, hence, both organic and inorganic species are present (Liu et al., 2017). During pyrolysis the organic S can be released as SO₂, H₂S and metal sulphides at 400°C while inorganic sulphate is highly stable and remains with biochar. Kim et al. (2014) pyrolysed PKS in a fluidised bed reactor at 485°C and found 0.18% S in the bio-oil. In our work, S content was often close to the detection limit (BC400 and BC500) and appeared to increase with pyrolysis temperature.
(0.8 ± 0.4 wt.% for BC600 (60 min)) and holding time. This finding, combined with the fact that PKS is dominated by hemicellulose, cellulose and lignin (Kong et al., 2014), suggest that S content in PKS biochar was primarily of inorganic origin.

N is a major element required by plants to promote the formation of shoots and roots as well as synthesise proteins. During pyrolysis release of N in the form of HCN and NH₃ can start at temperatures as low as 200°C. Decomposition and release is influenced by presence of hemicellulose (inhibits formation of NH₃), and lignin (promotes NH₃ formation), heating rate and presence of inorganic elements (Liu et al., 2017). Kim et al. (2014) reported a 6.65 wt.% N content in pyrolytic bio-oil from PKS which confirms the release of N from PKS during pyrolysis. The lack of proteins in PKS coupled with the volatilisation of N during pyrolysis explains why this element was not detected in PKS biochars produced in this study. The absence of N in both biochars agrees with the ultimate analysis.

Cl is typically found in stems and leaves of plants (Liu et al., 2017). It is associated with inorganic species such as K (sylvite) and organics able to volatilise in two stages as HCl at <500°C and metal chlorides at >700°C during pyrolysis (Liu et al., 2017). Cl content followed a similar trend to S content suggesting that it was associated with K to form sylvite. This is further supported by Clemente et al. (2018) who investigated inorganics in various biochars using XRD, SEM-EDX and principal component analysis. Principal component analysis was able to differentiate the EDX spectra into four main groups: (i) Ca, (ii) Fe, (iii) Al, Si and (iv) Cl, K, Mg, Na, P and S. Based on XRD these elements were also components of mineral phases such as Ca in calcite; Fe in magnetic Fe oxide; Si in quartz; K, Na, Ca, Al and Si in feldspar; and K and Cl in sylvite. However, further in-depth studies should be carried out to verify the mineral phases present in PKS biochar.

Overall, PKS biochar exhibited some essential nutrients which can potentially be used as a supplement to plant/animal growth.

Biochar Stability and Carbon Sequestration Potential Assessment

As one of the roles of biochar is to store carbon, it is the C yield and H/C ratio that is more significant rather than the biochar yield in order to project the biochar effectiveness in CSP (Masek et al., 2013; Enders et al., 2012).

Our study showed that increasing pyrolysis temperature led to lower H/C and O/C ratios as the abundance of aromatic C increased relative to H and O due to dehydration and removal of O-H functional groups (Domingues et al., 2017; Spokas, 2010; Krull et al., 2009). The H/C and O/C ratios of PKS biochar were 0.32-0.54 and 0.08-0.21, respectively (Figure 2), indicating high stability of the biochar due to an increased aromaticity (Bridgeman et al., 2008) causing higher recalcitrance of C. Biochars with low H/C and O/C ratios are graphite-like materials or charcoal which are highly stable compared to their original biomass feedstock having higher H/C and O/C ratios (EBC, 2012; IBL, 2015). Based on experimental data reported by Ma et al. (2019), the molar O/C ratios of commercial microcrystalline cellulose, xylan and KIason lignin from PKS decrease from 0.95 to 0.17, 0.99 to 0.17 and 0.44 to 0.293, respectively, when heated to 450°C. This equates to a 5.4-, 5.6- and 1.5-fold decrease. TGA and solid state ¹³C NMR demonstrated that all three biomass components have undergone profound structural changes with the obtained carbonised product dominated by the aromatic, highly stable aryl carbon. Considering that the O/C ratio of PKS in this study decreased at least 4.9-fold when pyrolysed at 400°C for 60 min, it can be expected with confidence without TGA that the PKS biochar is stable and less prone to degradation.

Our previous study (Haryati et al., 2018) revealed higher H/Corg values of 0.52 to 0.97. In this study, all H/Corg values were <0.7 which allowed us to proceed with the BC₁₀₀ calculation using Equation (2). The BC₁₀₀ values ranged from 70% for BC400 (60 min) to 86% for BC500 (90 min). The lowest corresponding CSP was estimated to be 0.49 kgCO₂/kgₚₖₛ for BC500 (30 min) and greatest for BC500 (90 min) (0.63 kgCO₂/kgₚₖₛ). From a CSP perspective, it is therefore recommended to pyrolyse PKS at 500°C for 90 min in order to immobilise the greatest amount of CO₂. However, the operation of the BEK itself also consumes energy which comes with a CO₂ penalty. A life cycle analysis should therefore be carried out to quantify the CO₂ emissions as a function of pyrolysis temperature and holding time.

Physico-chemical Properties

Raw PKS, a near-neutral pH material, was transformed to an alkaline biochar upon pyrolysis (pH 9.3 to 12.0). The pH increased sharply by up to 5.0 pH units from 7.0 to 9.3 at 400°C, 10.4 at 500°C and 12.0 at 600°C, in the order of BC600 (60 min) > BC500 (60 min) > BC 500 (30 min and 90 min) > BC400 (60 min), mainly due to enriched alkali species present in the inorganic ashes (Jindo et al., 2014; Yuan et al., 2011). The pH values and ash contents of biochars were positively correlated (Figure 3), justifying the present minerals as the main contributor to the alkalinity of PKS biochar (Zheng et al., 2013). In general, all biochars pyrolysed in this study showed pH values >8.0. The higher pH range indicates a higher liming potential of the resulting PKS biochar which is desirable for acidic soils suffering from aluminum
toxicity and low P availability (Manickam et al., 2015).

The CEC of PKS biochar decreased with an increase in pyrolysis temperature, in the order of BC400 (60 min) > BC500 (60 min) > BC500 (30 min) > BC500 (90 min) > BC600 (60 min). At initial biomass decomposition (400°C), many oxygenated compounds were formed. The resulting CEC was thus higher than that of raw PKS. However, as temperature increased further, the cellulose and lignin experienced a more severe thermal degradation (500°C and 600°C), releasing those formed oxygenated functional groups, e.g. carbonyl, and aromatisation took place. Negatively-charged groups on biochar surfaces were much reduced (Uttran et al., 2018) causing lesser active sites for cation exchange. As shown in Figure 4, the CEC (4.44 ± 0.31 cmol kg⁻¹) at 400°C dropped to 2.34 ± 0.06 and 1.01 ± 0.15 cmol kg⁻¹ at 500°C and 600°C, respectively. Similar trend was observed by Gaskin et al. (2007). As temperature increased further, most of the carbonyl groups responsible for negative charges were lost, as supported by the disappearance of the FTIR bands at 1200-1300 cm⁻¹ attributed to C=O and O-H phenolic and 1500-1600 cm⁻¹ for conjugated C=C and C=O cyclic structure (Figure 5). In short, the removal of oxygen-containing functional groups from the cellulose, hemicellulose and lignin of PKS occurring at higher pyrolysis temperatures had caused loss of biochar surface capability in exchanging cations. However, as biochar CEC is mainly regulated by the biomass rather than by pyrolysis temperature (Domingues et al., 2017), the fact that the PKS biochar showed low CEC means PKS constitutes very limited organic functional groups.

Similar to the trend of PKS biochar elemental contents at 500°C vs. holding time, the BC500 (60 min) hold the optimum alkalinity and CEC. At longer heating time (BC500, 90 min), volatilisation of C, O, and H compounds increased leading to more severe decomposition of surface functional group, and thus a decreased negative surface charge (Shaaban et al., 2014).

Functional Group Characteristics

The FTIR spectra (Figure 5) relate the production of PKS biochar as a function of pyrolysis temperature and holding time. Overall, Figure 5 demonstrates a broad similarity amongst the produced PKS biochars even at downward shift of the entire band positions. These biochars showed distinctive bands different from its original form: 3858 cm⁻¹-3737 cm⁻¹, inter- and intramolecular hydrogen bonded O-H; 3406 cm⁻¹, hydrogen-bonded O-H stretching; 2500-2336 cm⁻¹, S-H/acid O-H stretching; 1699 cm⁻¹, carbonyl ester C=O stretching; 1424 cm⁻¹, ≡C-H bend; 1214 cm⁻¹ and 1055 cm⁻¹; phenolic and alkoxy C-O stretching vibrations (Uttran et al., 2018). The broad absorption bands at about 3400 cm⁻¹ exhibited by PKS biochar corresponded to a sharp decreased intensity of the -OH stretching of cellulose and hemicellulose which had decomposed. The bands in this region for BC500 (30 and 60 min) and BC400 (60 min) were more intense probably due to a larger proportion of the retained oxygenated functional groups at less severe pyrolysis conditions. As the conditions elevated, as in BC500 (90 min) and BC600 (60 min), the bands nearly disappeared due to degradation and dehydration (volatilisation) of cellulosic and

Figure 4. The pH, ash content and cation exchange capacity (CEC) of original and pyrolysed palm kernel shell (PKS).
ligneous components. Similarly, the two bands at 2927-2850 cm\(^{-1}\) representing aliphatic C-H and O=C-H stretching of cellulose and hemicellulose had diminished entirely showing decompositions of these components during PKS pyrolysis.

The disappearance of aliphatic C-H stretching (2920-3000 cm\(^{-1}\)) and appearance of intense bands at 1500-1600 cm\(^{-1}\) (aromatic C=C stretching), 1380-1450 cm\(^{-1}\) (=C-H\(_2\) bending) and between 875 cm\(^{-1}\) (aromatic C-H bending) and 750 cm\(^{-1}\) (aromatic CH out-of-plane) showed an increasing degree of condensation and aromatisation of the PKS biochar organic compounds (Domingues et al., 2017; Brewer, 2012). The presence of aromatic C=C in PKS biochar is indicative of a dominating delocalised conjugated non-fossil-based covalent bond providing extra stability in soils over time, hence better carbon storage/sequestration in long run (Abdulrazzaq et al., 2014). Table 1 compares and summarises the characteristics FTIR bands of PKS biochars and raw PKS.

Surface Area and Pore Properties

The BET surface area of the PKS biochar increased exponentially, in the order of BC600 (60 min) > BC500 (30 min) > BC500 (90 min) > BC500 (60 min) > BC400 (60 min), with increasing pyrolysis.
TABLE 1. CHARACTERISTIC FOURIER TRANSFORM INFRARED (FTIR) BANDS OF ORIGINAL AND PYROLYSED PALM KERNEL SHELL (PKS)

<table>
<thead>
<tr>
<th>Wavenumber (cm⁻¹)</th>
<th>3,855</th>
<th>3,737</th>
<th>3,406</th>
<th>2,927</th>
<th>2,830</th>
<th>2,336</th>
<th>1,699</th>
<th>1,579</th>
<th>1,424</th>
<th>1,214</th>
<th>1,055</th>
<th>875</th>
<th>799</th>
<th>536</th>
<th>467</th>
</tr>
</thead>
<tbody>
<tr>
<td>PKS</td>
<td>-</td>
<td>-</td>
<td>3,399</td>
<td>2,923</td>
<td>2,853</td>
<td>2,340</td>
<td>1,720</td>
<td>1,595</td>
<td>1,419</td>
<td>1,238</td>
<td>1,032</td>
<td>875</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>BC400 (60 min)</td>
<td>3,855</td>
<td>3,748</td>
<td>3,420</td>
<td>2,927</td>
<td>-</td>
<td>2,365</td>
<td>1,705</td>
<td>1,596</td>
<td>1,424</td>
<td>1,168</td>
<td>1,059</td>
<td>875</td>
<td>800</td>
<td>538</td>
<td>464</td>
</tr>
<tr>
<td>BC500 (60 min)</td>
<td>3,856</td>
<td>3,742</td>
<td>3,394</td>
<td>-</td>
<td>-</td>
<td>2,323</td>
<td>1,718</td>
<td>1,584</td>
<td>1,424</td>
<td>1,217</td>
<td>1,054</td>
<td>876</td>
<td>800</td>
<td>528</td>
<td>473</td>
</tr>
<tr>
<td>BC600 (60 min)</td>
<td>3,869</td>
<td>-</td>
<td>3,409</td>
<td>-</td>
<td>-</td>
<td>2,367</td>
<td>1,703</td>
<td>1,566</td>
<td>1,427</td>
<td>-</td>
<td>1,062</td>
<td>875</td>
<td>-</td>
<td>533</td>
<td>-</td>
</tr>
<tr>
<td>BC500 (30 min)</td>
<td>3,852</td>
<td>3,737</td>
<td>3,385</td>
<td>2,929</td>
<td>2,866</td>
<td>-</td>
<td>1,716</td>
<td>1,597</td>
<td>1,424</td>
<td>1,162</td>
<td>1,056</td>
<td>876</td>
<td>796</td>
<td>529</td>
<td>469</td>
</tr>
<tr>
<td>BC90</td>
<td>3,856</td>
<td>3,742</td>
<td>3,394</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1,718</td>
<td>1,584</td>
<td>1,424</td>
<td>1,217</td>
<td>-</td>
<td>876</td>
<td>-</td>
<td>528</td>
<td>-</td>
</tr>
<tr>
<td>BC90</td>
<td>3,859</td>
<td>3,737</td>
<td>3,373</td>
<td>2,927</td>
<td>2,832</td>
<td>-</td>
<td>1,720</td>
<td>1,560</td>
<td>1,424</td>
<td>-</td>
<td>1,056</td>
<td>876</td>
<td>-</td>
<td>537</td>
<td>462</td>
</tr>
</tbody>
</table>

TABLE 2. BRUNAUER EMMET-TELLER (BET) SURFACE AREA, TOTAL PORE VOLUME AND WATER HOLDING CAPACITY OF ORIGINAL AND PYROLYSED PALM KERNEL SHELL (PKS)

<table>
<thead>
<tr>
<th>Sample</th>
<th>BET surface area (m² g⁻¹)</th>
<th>Total pore volume (cm³ g⁻¹)</th>
<th>Water holding capacity [g H₂O/10 g]</th>
</tr>
</thead>
<tbody>
<tr>
<td>PKS</td>
<td>106 ± 3</td>
<td>0.01 ± 0.00</td>
<td>2.23 ± 0.06</td>
</tr>
<tr>
<td>BC400 (60 min)</td>
<td>200 ± 9</td>
<td>0.17 ± 0.00</td>
<td>6.07 ± 0.07</td>
</tr>
<tr>
<td>BC500 (60 min)</td>
<td>208 ± 9</td>
<td>0.21 ± 0.00</td>
<td>6.11 ± 0.10</td>
</tr>
<tr>
<td>BC600 (60 min)</td>
<td>329 ± 4</td>
<td>0.31 ± 0.00</td>
<td>5.87 ± 0.05</td>
</tr>
<tr>
<td>BC500 (30 min)</td>
<td>268 ± 3</td>
<td>0.24 ± 0.01</td>
<td>6.21 ± 0.10</td>
</tr>
<tr>
<td>BC500 (90 min)</td>
<td>238 ± 2</td>
<td>0.29 ± 0.00</td>
<td>5.26 ± 0.22</td>
</tr>
</tbody>
</table>
temperature while holding time had no effect (Table 2). Recondensed volatile matter that blocked pores gradually evaporated with increasing temperature thus creating new pores and providing additional surface area (Liu et al., 2008; Wannapeeera et al., 2008). As shown by SEM monograph (Figure 6), the average measured pore diameter for original PKS was 0.74 ± 0.19 μm (Figure 6a) while that of BC500 (60 min) 1.06 ± 0.22 μm (Figure 6b). It is evident that the pore diameter of pyrolysed PKS has increased significantly by at least a factor of 1.4 (p < 0.01). However, prolonged pyrolysis at >700°C enlarges these pores and finally, they collapse and merge into smaller pores causing structural shrinkage and pore narrowing (Liu et al., 2008).

The water holding capacity increased more than two-fold from its original 2.23 g g⁻¹ (raw PKS) to a consistent range of 5.26 - 6.21 g g⁻¹ for PKS biochar produced at different temperatures and holding times. The water holding capacity was in the order of BC500 (30 min) > BC500 (60 min) > BC400 (60 min) > BC600 (60 min) > BC500 (90 min). As the physical and surface properties of biochar are interrelated, the increase in water holding capacity was attributed to a >two-fold increase in the surface area and pore volume as discussed. The ability of the produced biochar to hold water is essential for plant growth, especially in sandy soil. In the beginning of thermal processing, the pores of biochar was softened and became more exposed, however, as the biochar was heated further (> 60 min), thermal annealing occurred so specific surface area dropped significantly. However, when the pores became larger as in the case of BC600 (60 min) and BC500 (90 min), they could not hold the water as effectively as those of smaller pores. These two PKS biochars held the least amount of water despite possessing the largest total pore volume of 0.31 cm³ g⁻¹ and 0.29 cm³ g⁻¹, respectively. This might be due to an increased hydrophobicity of the surface as a result of a loss of polar functional groups as indicated by low O/C ratios and FTIR spectra.

CONCLUSION

The water holding capacity of PKS biochar did not vary remarkably with pyrolysis temperature and holding time [BC500 (30 min) > BC500 (60 min) > BC400 (60 min)]. The BET surface area was in the order of BC600 (60 min) > BC500 (30 min) > BC500 (90 min), while the order of biochar alkalinity was BC600 (60 min) > BC500 (60 min) > BC500 (30 min). CEC was in the order of BC400 (60 min) > BC500 (60 min) > BC500 (30 min). In terms of CSP, the order was BC500 (90 min) > BC600 (60 min) > BC500 (60 min). Valuable plant macronutrients (K, Ca, Mg, P) were retained in PKS biochars produced at 400 and 500°C (BC400 and BC500). From these results it is concluded that PKS biochar produced at 500°C and 60 min provides the most promising agronomic and global warming mitigation potential in low fertility, acid soils. At this temperature and holding time, an increased content of carbon coupled with a reduced H and O has thus resulted in a stable biochar with lower H/C and O/C ratios. This together with an increased aromatic C=C functionality further confirm the capability of biochar to sequester carbon for long run. In addition, the beneficial plant macro and micronutrients plus greater water holding capacity of the derived alkaline biochar further add value and enhance any intended soil amendment. However, field trials coupled with a detailed life cycle analysis are required to confirm the projected benefits.

ACKNOWLEDGEMENT

The authors express their gratitude to the Director-General of MPOB for permission to publish this article. The financial support through the Graduate Students Assistantship (GSAS) Programme is greatly appreciated too. Thank is also due to the technical assistance of the staff from the Energy and Environment Unit, MPOB.

REFERENCES

Budai, A; Zimmerman, A R; Cowie, A L; Webber, J B W; Singh, B P; Glaser, B; Masiello, C A;

Clemente, J S; Beauchemin, S; Thibault, Y; Mackinnon, T and Smith, D (2018). Differentiating inorganics in biochars produced at commercial scale using principal component analysis. ACS Omega, 3(6): 6931-6944.

Domingues, R R; Trugilho, P F; Silva, C A; De Melo, I C N A; Melo, L C A; Magriotis, Z M and Sanchez-Monedero, M A (2017). Properties of biochar derived from wood and high-nutrient biomasses with the aim of agronomic and environmental benefits. PLoS ONE, 12(5): e0176884.

Liu, X; Zhang A; Ji, C; Joseph, S; Bian, R; Li, L; Pan, G and Paz-Ferreiro, J (2013). Biochar’s effect on crop productivity and the dependence on experimental conditions - A meta-analysis of literature data. Plant and Soil, 373(1): 583-594.

Usman, A R A; Abduljabbar, A; Vithanage, M; Ok, Y S; Ahmad, M; Ahmad, M; Elfaki, J; Abdulazeem, S S

