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ABSTRACT
Ganoderma disease that affects oil palms has caused huge losses to the palm oil industry in Malaysia. 
To curb widespread infection and mitigate further losses, attempts have been made to detect infected oil 
palms automatically so that they can be treated or destroyed. The multispectral remote sensing technology 
can be employed to this effect efficiently. From the aerial images, infected oil palms can be detected and 
classified according to the Ganoderma Disease Severity Index (GDSI). In this study, object-based image 
analysis (OBIA) was performed to classify oil palms in a selected area into three classes namely; healthy 
(T0), moderately infected (T2) and severely infected (T3). It would be desirable if lightly infected oil palms 
could also be categorised as a class. However, it was extremely difficult to discriminate lightly infected oil 
palms from the healthy ones just by analysing the aerial images since symptoms of early infection were not 
evident in the fronds yet. Images of each individual band as well as those obtained by combining two, three 
or four bands of the available spectra were analysed. The OBIA was conducted using example-based feature 
extraction procedure and various OBIA settings were tested to achieve a number of classification results. 
The accuracies of the results are quantified by comparing the results with the ground truth data. The results 
suggest that the combination of Edge-based segmentation and merge algorithm using Full-Lambda Schedule 
(FLS), Support Vector Machine (SVM) classifier and three-band data of (G_R_NIR) scores the highest 
accuracy of (91.8%). When data of individual bands were tested using the same algorithm and classifier, they 
obtained moderate accuracies ranging from 65.5%-76.2%. However, when data of two, three and four bands 
were combined, better results with classification accuracies from 70%-90% were recorded. These results 
show that the OBIA can be used to analyse multispectral images of oil palms to detect moderate and severe 
infection of Ganoderma disease. Detection of early infection of Ganoderma is feasible if more advanced 
algorithms and classifiers can be used with multispectral and hyperspectral aerial images.
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INTRODUCTION

The oil palm has been a major contributor to oils 
and fats production compared to other vegetation 
oil such as soyabean and rapeseed oil. The total 
export revenue from oil palm products in 2017 was 
RM 77.85 billion, an increase of about 14.62% from 
year 2016 revenue (RM 67.92 billion). The oil palm 
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industry significantly contributed to Malaysia’s 
gross domestic product (GDP), gross national income 
(GNI), foreign exchange and employment (Kushairi 
et al., 2018). But the oil palm (Elaeis guineensis) is 
vulnerable to several diseases. The main disease 
that threatens oil palm and causes economic loss in 
Malaysia and Indonesia is Ganoderma disease caused 
by Ganoderma boninense fungus (Idris et al., 2002;  
2014; Roslan and Idris, 2012).

Current works on the detection of Ganoderma 
disease infection in oil palms mainly focus on 
ground-based sampling of individual oil palms in 
the field and laboratory-based analyses (Madihah et 
al., 2014). The assessment of the Ganoderma disease 
is made by visual inspection of the appearance of 
Ganoderma mycelium, small white button, fruiting 
bodies or stem and bole rotting at the palm base. 
Foliar symptoms such as yellowing and drying of 
leaves and skirting of lower fronds of the oil palm 
canopy is also important (Rees et al., 2007; Nuranis 
et al., 2016; Idris et al., 2016). The ground census 
method is labour-intensive and time-consuming. 
It is difficult to accurately estimate the regional 
distribution and severity of the disease in large area 
within a short time. Furthermore, visual assessment 
is subjective and different workers might classify the 
severity of infected palms differently.

In large plantation areas with millions of oil 
palms, a large-scale approach that is fast and cheap 
is more practical since assessment must be done 
periodically to estimate the pattern of spread of the 
disease and the effectiveness of the control strategy 
employed. A viable approach that can be used for 
detecting Ganoderma infection is by analysing aerial 
view of the oil palm plantation area. It is fast since a 
sortie of an Unmanned Aerial Vehicle (UAV) with a 
camera can cover a large area. Although Ganoderma 
disease only affects the root and base of the oil palm 
stem, a study by Haniff et al. (2005) shows that the 
root of an oil palm infected by Ganoderma triggers 
chemical signaling such as by releasing abscisic acid 
(ABA) produced by its dehydrating roots even when 
the water status in the field is kept constant. This 
chemical signal causes stomata closure which results 
in reduction of stomatal conductance that is highly 
correlated with photosynthesis. These physiological 
changes in the oil palm foliar cause changes in the 
spectral properties of the oil palm canopy. Over 
time, variations in the spectral properties of the 
canopy will become detectable by analysing the 
multispectral images of its aerial view (Yang et al., 
2010; Johansen et al., 2018; Albetis et al., 2019).

In the last two decades, aerial image analysis 
has been widely used for various agricultural 
applications including detection of fungal, bacterial 
and insect related diseases in plants (Shafri and 
Hamdan, 2009; Mahlein et al., 2010; Lelong et al., 
2010). Fungi and bacteria usually attack plants at 
their molecular, tissue and cellular levels. The attack 

alters the reflectance values of green (G), red (R), 
red edge (RE) and near-infrared (NIR) regions of 
the foliar spectrum of the plants (Yang et al., 2010; 
Gupta, 2010). The spectral changes become key 
indicators that differentiate between healthy and 
infected plants. Leckie et al. (2005) found that NIR, R 
and blue (B) bands were most useful in detecting jack 
pines infected by worms. Ratios of bands notably 
produced better classification results than single 
bands, with a Normalised Difference Vegetation 
Index (NDVI) or R/NIR ratio being the best. 

The G band corresponds to the reflected energy 
in the 530-570 nm spectral band and the reflectance 
peak is at around 550 nm. This spectral band is 
often strongly correlated with leaf chlorophyll 
content. The R band corresponds to the reflected 
energy in the 640-680 nm spectral band. The strong 
absorption in this band results in low reflectance. 
Reflectance varies significantly in relation to factors 
such as biomass, leaf area index (LAI), soil minerals, 
humidity and plant stress (Rees, 2013; Richards, 
2013). Meanwhile, the RE band (730-740 nm) is a 
very narrow and it corresponds to the rapid change 
from low R reflectance to high NIR reflectance. This 
band is very sensitive to plant stress and provides 
information on the chlorophyll and nutrient status 
of the plant. Moreover, an increase in the reflectance 
of this band often observed when the plant is under 
nutrient stress (Campbell, 2002). 

This RE band can be regarded as the transition 
zone of steep change in reflectance between the 
strong chlorophyll absorption near 680 nm and 
strong scattering by leaf cell structure near 750 nm. 
The value of this change was measured on leaves 
of various species by taking the derivative of the 
reflectance spectrometry (Haboudane et al., 2002). 
The RE can also indicate the status of chlorophyll 
content, biomass and hydric for a plant (Filella and 
Penuelas, 1994). Several studies have discussed 
the methodology in obtaining the RE in vegetation 
(Carter and Knapp, 2001; Cho and Skidmore, 2006; 
Vincini and Frazzi, 2011). 

The NIR band, which corresponds to the 
wavelength range of 770-810 nm, has the strongest 
reflectance of the bands studied. This band is 
sensitive to plant vigour and crop type. Pigments 
such as chlorophyll do not influence the NIR so it 
is often used to normalise chlorophyll-sensitive 
wavebands. Moreover, a reduction of the reflectance 
in this band results when a plant is under stress.

A similar approach of using multispectral aerial 
images can be used to detect and classify oil palms 
that have been infected by Ganoderma. To date, 
several studies on Ganoderma disease detection in 
oil palms have been carried out using multispectral 
aerial images (Izzuddin et al., 2017; Parisa et al., 2017; 
Santoso et al., 2011; 2018). Izzuddin et al. (2017a) 
studied the application of multiband (RGB and NIR) 
digital number (DN)-based images with no spectral 
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reflectance acquired from UAV to detect Ganoderma 
infected oil palms. They used conventional and 
advanced classifiers such as Maximum Likelihood 
(ML), Parallelepiped (P), Neural Networks (NN) and 
Support Vector Machines (SVM) to classify healthy 
and Ganoderma-infected oil palm. Poor to moderate 
classification accuracies (20%-40%) were reported 
when individual and combinations of bands were 
used to detect oil palms infected by Ganoderma.

In a similar study, Santoso et al. (2018) employed 
high-resolution multispectral WorldView 3 (WV-3)
satellite images to classify healthy and Ganoderma 
infected oil palms into four categories. The 
reflectance values from eight bands of WV-3 images 
were used to classify the severity of infected oil 
palms in a selected plantation. A Decision Tree 
(DT), Random Forest (RF) and SVM were utilised as 
a classifier. The oil palms were first classified into 
healthy or infected category. Then, depending on 
the severity of the disease, infected oil palms were 
further classified as early, moderately or severely 
infected. When all bands were used together with 
band number four as a correction band, 54.1%, 
53.3% and 53.1% classification rates were achieved 
for SVM, DT and RF classifier, respectively. 

Using all-bands available may not produce the 
best classification result if multicollinearity exists 
among the bands. Collinearity is the situation where 
two or more predictor variables in a statistical model 
are linearly related (Dormann et al., 2013). Thus, only 
significant bands and band combinations should be 
used to reduce redundancy and multicollinearity 
(Patel and Kaushal, 2011). Techniques like Principal 
Component Analysis and Optimum Index Factor 
can be employed to select the best bands to use with 
an advanced classifier such as SVM, NN, DT, or RF 
(Mokhtari et al., 2013; Salgadoe et al., 2018; Huang et 
al., 2018; Puliti et al., 2018; Mulley et al., 2019; Heim 
et al., 2019).

The advancement of image processing 
technique has introduced the object-based image 
analysis (OBIA) technique that integrated the 
image segmentation algorithm and advance image 
classifier such as SVM (Blaschke, 2010). The OBIA 
was introduced to solve the problem of mixed-pixel 
that usually produce misclassification of features 
of interest in the image and false-positive results 
that reduce the accuracy of the image classification 
(Li et al., 2014). One of widely used segmentation 
algorithm is the watershed segmentation (Kavzoglu 
and Tonbul, 2017).

 The watershed segmentation has been used 
to segment features such as crops and vegetations 
(Roerdink et al., 2001; Jing, 2009; Ballanti et al., 
2016; Rizeei et al., 2018). In segmentation, pixels 
in the image were grouped into non-overlapping 
homogeneous regions based on some criteria. Image 
classification was conducted after segmentation 
process. The SVM classifier is one of good classifier 

that been used in many crop and plant diseases 
studies (Pujari et al., 2016; Rahman et al., 2017; Huang 
et al., 2018; Turkoglu and Hanbay, 2019). The SVM is 
a supervised learning binary classifier and is based 
on the structural risk minimisation principle. The 
non-linear structures can be modeled by transferring 
the space of input data into a high dimension space 
through kernel trick. The selection of kernel type is 
important to achieve good classification accuracy. 
The SVM usually uses one of four basic kernels, 
which are linear, polynomial, sigmoid and radial 
basis function (Gholami and Fakhari, 2017). 

The high spatial resolution of multispectral 
image from UAV provides detailed physical 
conditions of oil palm canopy fronds, leaflets and 
spears and also spectral information from the G, R, 
RE and NIR bands. But no extensive studies have 
been made on the multispectral image using the 
OBIA analysis for detection of Ganoderma disease in 
oil palm. Therefore, the objective of this study was to 
classify Ganoderma infected oil palms in a plantation 
area into three classes according to its severity using 
OBIA. This was achieved by analysing multispectral 
aerial images acquired by a UAV with a multispectral 
camera.

MATERIALS AND METHODS

The flow chart of the methodology of the study is 
shown in Figure 1.

Figure 1. Flow chart of methodology.
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Study Area

The study plot was located in an oil palm 
plantation in Lekir, Perak, Malaysia (4° 6’ 42” N 
and 100° 53’ 12” E) as shown in Figure 2. Its annual 
precipitation was 2256 mm and average daily 
temperature was between 24°C and 34°C. The size 
of the area was estimated to be around 4 ha and 
planted with dura x pisifera (DxP) oil palms. The 
planting density of the plot was 160 oil palms ha-1 
and the age of the oil palms was 16 years old. The 
area was on a flat terrain and had no other diseases 
nor pest infestation and nutrient deficiencies.

Ground Data Collection

The ground data collection involved fieldworks 
to record Ganoderma disease census and collection 
of geographic coordinates using Global Positioning 
System (GPS) device to plot the study area in spatial 
database and image geometric correction purposes. 
The Ganoderma disease census in the field was 
conducted for a duration of five days in April 2018 
during the UAV image acquisition campaign. The 
oil palms were categorised into Ganoderma disease 
severity index (GDSI) as healthy (T0), early (T1), 
moderately infected (T2) and severely infected 
(T3) (Table 1). The manual categorisation carried 
out during ground census was based on visual 
symptoms of the disease on the oil palms (Table 1) 
(Idris et al., 2016).

Multispectral Image Acquisition

The multispectral images were acquired from 
the study area using a Parrot Sequoia multispectral 
camera system that was mounted on a DJI Phantom 
Matrice, a light-weight quadcopter-type UAV. 

The multispectral camera was developed and 
manufactured by Parrot Sequioa (Parrot Drones 
SAS), USA. The system provides multispectral 
images of four bands with bandpass (BP), which are: 
1. G [550 nanometre (nm) BP 40]; 2. R (660 nm BP 
40); 3. RE (735 nm BP 10) and 4. NIR (790 nm BP 40). 
The ground spatial resolution is 0.2 m at 100 m of 
flight altitude. The images were acquired on 2 April 
2018 between 10.00 am to 11.00 am local time during 
sunny day and clear sky. 

Figure 2. Aerial photo captured by Sequoia camera onboard unmanned aerial vehicle (UAV) and location of study area.

Peninsular 
Malaysia

Perak State

TABLE 1. THE Ganoderma DISEASE SEVERITY INDEX 
(GDSI)

Index Category Description

T0 Healthy No presence of Ganoderma fruiting bodies, 
no foliar symptoms and rotting at the base 
of stem, negative results of Ganoderma 
selective medium (GSM) and polymerase 
chain reaction (PCR)-DNA test.

T1 Early Oil palm looks healthy, no foliar symptoms 
but presence of white mycelium of 
fruiting bodies of Ganoderma at the base of 
stem, positive results of Ganoderma using 
GSM or PCR-DNA test.

T2 Moderate Presence of white mycelium of fruiting 
bodies of Ganoderma at the base of stem, 
existence of foliar symptom such as 
yellowing and lowering of older fronds 
(<30%). Existence of rotting at the base of 
stem (<30%), positive results of Ganoderma 
using GSM or PCR-DNA test.

T3 Severe Presence of white mycelium of fruiting 
bodies of Ganoderma at the base of stem. 
Severe foliar symptom (>30%). Existence 
of rotting at the base of stem (>30%), 
positive results of Ganoderma using GSM 
or PCR-DNA test.
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Pre-processing

The raw multispectral images were 
radiometrically calibrated to radiance and then 
atmospherically corrected to reflectance using 
standard operation procedure provided in Pix4D 
software (Pix4D, 2019). The final reflectance values 
were measured in percentage unit (0%-100%). 
The calibrated data were then georeferenced 
using ground coordinate obtained from 
GPS and inertial measurement unit (IMU) 
information. 

OBIA on Multispectral Image

The OBIA was integrated with the image 
segmentation and followed by advanced image 
classification. In this study, Example-based Feature 
Extraction toolbox in Environment for Visualising 
Image (ENVI) (version 5.0, Harris Geospatial 
Solutions Inc., Broomfield, CO, USA) software was 
used to conduct the OBIA. 

In this study, the Edge-based watershed 
segmentation algorithm with three parameters 
namely Scale Level, Merge Level and Texture 
Kernel Size (TKS), was applied (Roerdink et al., 
2001). The optimal segmentation parameter setting 
was set by trial-and-error where the best parameter 
values were defined via visual assessment of the 
segmented image outputs. After the segmentation 
process, all attributes generated by segmentation 
process were selected to be used as class predictors 
in the classification process. The segments in the 
segmented image were selected and combined to 
represent individual oil palm canopies and then 
categorised into the GDSI. The combined segments 
of the oil palm canopy for each GDSI was used as 
training samples for the SVM classifier. The SVM 
classifier was selected because other studies have 
shown that SVM provide higher accuracy compared 
to other non-parametric advance classifiers such 
as NN and regression tree (RT) (Shafri and Ramle, 
2009; Shao and Lunetta, 2012; Noi and Kappas, 
2018).

Shao and Lunetta (2012) had classified MODIS 
time series multispectral satellite imagery for 
land cover characterisation using SVM, NN 
classifiers and classification and regression tree 
(CART) technique. Their results showed that the 
SVM generated good overall accuracies ranging 
from 77%-80% for training sample sizes from 
20-800 pixels per class, compared to 67%-76% 
and 62%-73% for NN and CART, respectively. 
These results indicated that the SVM had good 
generalisation method although using small 
training sample sizes. They also concluded that 
SVM showed less variability in accuracy when 
classification trials were repeated using different 
training sample sets.

Accuracy Assessment

The accuracy of VI outputs were then assessed 
using comparison of OBIA output image with 
the ground truth and also confusion matrix. The 
comparison of OBIA outputs and ground truth was 
conducted using following formula:

Number of true positive
Number of ground truth x 100 = Overall accuracy (%)

Other than that, confusion matrix was also 
used to determine the Kappa coefficient of the 
classification. The confusion matrix compares the 
observed from image classification outputs and 
expected from the ground census data and provides 
the percentage of similarity of image output 
compared to actual ground census in term of overall 
accuracy in percentage value. The overall accuracy 
is calculated by summing the number of pixels 
classified correctly based on ground truth and divide 
by the total number of pixels (Kohavi and Provost 
1998). The overall accuracy was also cross-checked 
using Kappa coefficient. The interpretation of Kappa 
coefficient values for classification accuracy classes 
is shown in Table 2 (Viera and Garrett 2005).

TABLE 2. KAPPA COEFFICIENT DESCRIPTION TABLE

Kappa coefficient Description

<0 Less than chance agreement

0.01-0.20 Slight agreement

0.21-0.40 Fair agreement
0.41-0.60 Moderate agreement

0.61-0.80 Substantial agreement

0.81-0.99 Almost perfect agreement

RESULTS AND DISCUSSION

Pre-processing Output

The set of raw images acquired from the UAV 
was radiometrically corrected and georeferenced 
with Rectified Skewed Orthomorphic (RSO) 
projection of West Malaysia with Kertau 48 as 
datum for each individual band. Then, the images 
were orthorectified to correct skewness of features 
in the images. The orthorectified images were 
then mosaiced to represent the whole study area. 
The mosaiced image of each individual band was 
displayed in one-band grayscale mode (Figure 3).

The mosaiced image was then overlaid onto 
each other and merged into a single image with 
four multispectral bands. The coloured display 
of the multispectral band can be visualised by 
combination of three bands. Figure 4a shows the 
mosaiced coloured image with band combination of 
G, R and NIR. 
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In this study, the analysis was conducted on 
individual band, two-band combinations, three-
band combinations and all-bands combinations 
(Table 3). The different combinations of multispectral 
bands are also useful to enhance the image 
classification accuracy (Momeni et al., 2016; Xie et 
al., 2019).

Ground Census

The ground census of individual oil palm that 
has been recorded in the field based on visual 
assessment and categorised into the GDSI was 
digitised into their respective coordinates and 
the attributes of GDSI were tagged to each of the 
individual oil palm points as shown in Figure 4b. 
The total number of oil palm inspected during the 
ground census was 208 oil palms.

OBIA Outputs

In OBIA process, the pre-processed images were 
analysed using separated four individual-bands 
and 11 different band combinations. Firstly, each 
of the image combination as listed in Table 3 was 
segmented using watershed segmentation method 

in ENVI 5.0 software. Several trial-and-error testing 
for selection of the best values for the Segment and 
Merging processes was conducted and the results 
showed that the best Segment was Edge-based 
with Scale Level value of 50 and Merging was best 
conducted by using FLS algorithm with Merge 
Level of 60 while the TKS value was set to 3 (Figure 
5). The values were selected because they could 
provide good delineation of the oil palm canopy 
and fronds and minimised the over segmentation 
problems. The segmented images were then used as 
input image for further SVM classification.

Then, SVM classification was conducted on the 
segmented image for each band combinations. There 
were 30, 8 and 7 oil palms for T0, T2 and T3 selected 
as training sample for the SVM classification. 
The training samples for T1 was not included 
for classification because there were only two 
palms confirmed fitting the description for the T1 
category and not enough as input for the classifier. 
The training samples were selected randomly and 
well-distributed in the study area. The SVM was 
preferable compared to other classifiers due to 
several reports suggesting that SVM provided better 
classification accuracy for multispectral imageries 
(Pal and Mather, 2005; Ballanti et al., 2016).

Figure 3. List of individual pre-processed image bands acquired from Sequoia multispectral (a) green (G), (b) red (R), (c) red edge (RE), and 
(d) near infrared (NIR).

(a) (b) (c) (d)

Figure 4. (a) Pre-processed image acquired by Sequioa camera (band combination: green, red, near-infrared) and
(b) ground census of Ganoderma Disease Severity Index (GDSI).

(b)

Legend
T0
T2
T3

(a)
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overall accuracy between 65.5% and 76.2% only. The 
results also showed that the classification accuracy 
of T3 was lower than T2. The problem occurred 
when there were several palms confirmed as T3 from 
the ground census but were classified as T2 by the 
classifier. This scenario occurred due to redundancy 
or similarity of spectral properties from training 
samples of T2 and T3.

Our results showed that using two and more 
band combinations enabled SVM classifier to 
enhance the sensitivity of detecting spectral changes 
that were triggered by biophysical changes in the oil 
palm canopy as mentioned by Haniff et al. (2005). 
Shafri and Ramle (2009) also found that classification 
of land use and land cover from multispectral remote 
sensing satellite using SVM classifier provided better 
overall accuracy of 73% compared to Decision Tree 
(DT) classifier with only 69% overall accuracy. Other 
than that, Noi and Kappas (2018) also suggested 
that SVM produced higher overall accuracy (90%-
95%) compared to Random Forest (RF) and k 
Nearest Neighbour (kNN) classifier for land cover 
classification.

Each spectral band has specific response to plants 
biophysical changes. The G band is sensitive to 
plant/leaf nitrogen and pigment. While, the R band is 
sensitive to chlorophyll a and b content. The RE band 
is sensitive to plant stress and chlorophyll content 
and NIR is sensitive to water content, moisture and 
biomass of plant (Thenkabail et al., 2016). 

The output images of the SVM classification 
were presented in pseudo-colour images consisted 
of T0 (blue), T2 (yellow), T3 (red) and background 
(dark) (Figure 6). The setting for SVM classifiers was 
conducted based on trial-and-error until a good 
classification accuracy was achieved. The SVM 
parameters setting in this study were Radial Basis 
Function (RBF) as Kernel Type, the Gamma in Kernel 
Function (GiKF) was set to 0.333 with 100 penalty 
parameters. The Degree of Kernel Polynomial 
(DoKP) was set to 1 and Bias in Kernel Function 
(BiKF) was set to 1.00. The threshold was set to 5, 
indicating 95% of confidence level for classification. 
The analysis also allowed unclassified to classify the 
unknowns into another class to reduce the errors that 
existed during classification.

The classification outputs were assessed for 
their accuracy by comparison of OBIA output with 
the ground census and measured in percentage 
of accuracy and kappa coefficient generated from 
confusion matrix (Table 4). The results of SVM 
classification showed that there were eight different 
band combinations, which produced good accuracy 
(>80%); they were: 1) R_NIR; 2) G_NIR; 3) RE_NIR; 4) 
G_R_RE; 5) G_R_NIR; 6) R_RE_NIR; 7) G_RE_NIR; 8) 
G_R_RE_NIR. The results shown in Table 4 revealed 
that G_R_NIR has the highest overall accuracy 
(91.8%) followed by G_R_RE_NIR (89.3%). The 
results also showed that classification of individual 
band alone provided moderate classification with 

Figure 5. Outputs of segmentation process (a) original image, and (b) segmented image.

(a) (b)

TABLE 3. LIST OF INDIVIDUAL BAND AND DIFFERENT BAND COMBINATIONS 

No. Individual-band
Two-band 

combinations
Three-band 

combinations
Four-band 

combinations
1 G G_R G_R_RE G_R_RE_NIR
2 R G_RE G_R_NIR -
3 RE G_NIR R_RE_NIR -
4 NIR R_RE G_RE_NIR -
5 - R_NIR - -
6 - RE_NIR - -

Note: G - green band, R - red band, RE - red edge band, NIR - near infrared band.
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Our results showed that for individual band, 
the RE band showed the highest accuracy (76.2%), 
followed by R band (71.3%), G band (68.4%) and 
NIR band (65.5%). Our results also suggested 
that the difference between GDSI was mainly 
influenced by the plant stress and reduction of 
chlorophyll a and b content detected by RE and 
R bands and followed by plant/leaf nitrogen and 
pigment reduction detected by G band. There were 
a smaller number of palms suffered from reduction 
of water content, moisture and biomass as detected 
in NIR band because majority of the palms in the 
study area were in healthy and moderate infection 
condition. 

The RE band showed significant influence in 
Ganoderma disease detection as reported by other 
crop disease studies (Fahrentrapp et al., 2019; Heim 
et al., 2019). Fahrentrapp et al. (2019) suggested RE as 
one of the important bands to discriminate several 

categories of gray mold leaf infections in tomato. 
In addition, Heim et al. (2019) also reported that 
the RE and NIR showed high relative importance 
for the classification of Myrtle Rust on Lemon 
Myrtle and furthermore, by visually assessing the 
spectral reflectance signatures of the multispectral 
image and suggested that multispectral band 
combinations provide higher accuracy compared 
to individual band.

Meanwhile, Santoso et al. (2018) showed 
moderate classification results of different levels of 
Ganoderma disease severity in oil palm that may due 
to the lower spatial resolution of the multispectral 
satellite imagery used compared to high spatial 
resolution multispectral imagery from UAV that 
we used in this study. Their results supported 
the necessity of high spatial resolution image for 
enhancing disease detection in crops (Yuan et al., 
2014; Yamamoto et al., 2017). 

TABLE 4. ACCURACY ASSESSMENT OF CLASSIFICATION OUTPUT FOR INDIVIDUAL BAND AND DIFFERENT BAND 
COMBINATIONS

Band combinations
Category accuracy (%)

Kappa coefficient
Rank T0 T2 T3 Overall accuracy (%)

G 11 72.9 38.5 33.3 68.4 0.6439
R 10 75.1 53.9 33.3 71.3 0.6341
RE 13 75.1 84.6 83.3 76.2 0.6215
NIR 12 66.9 46.2 66.7 65.5 0.4061
G_R 14 81.3 61.5 66.7 79.1 0.6121
G_RE 8 79.6 69.2 50 77.2 0.8990
G_NIR 4 93.4 69.2 50 89.3 0.9430
R_RE 9 74.6 53.8 41.7 71.4 0.3237
R_NIR 5 91.7 61.5 41.7 86.9 0.9383
RE_NIR 2 92.8 84.6 75 91.3 0.7396
G_R_RE 7 85.1 76.9 41.7 82.0 0.8693
G_R_NIR 1 95.03 76.9 58.3 91.8 0.9426
R_RE_NIR 4 90.6 84.6 33.3 86.9 0.9665
G_RE_NIR 6 87.8 84.6 58.3 85.9 0.7929
G_R_RE_NIR 3 93.4 76.9 41.7 89.3 0.8941

Figure 6. Visual comparison of the best object-based image analysis (OBIA) classification output image of 
three-band combination image (G_R_NIR) with ground truth data: (a) T0, (b) T2 and (c) T3.

(b)

Ground
Truth

Classification
Output
image of
G_R_NIR

Legend
	 T0
	 T2
	 T3
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Our findings agreed with Yuan et al. (2014) 
and Yamamoto et al. (2017) who showed that the 
combination of two bands of the high spatial 
resolution multispectral imagery could also increase 
the accuracy with RE_NIR, which could provide 
91.3% of accuracy. The results agreed with Heim 
et al. (2019) and Albetis et al. (2019) who reported 
that the combination of RE and NIR provided high 
accuracy for discrimination of disease in lemon and 
grapevines. They also tested the combination of 
both bands using vegetation indices and were able 
to enhance the discrimination of disease severity. 
There are also several studies showing good 
results from the application of multispectral band 
combinations for crop diseases (Khairunniza-Bejo et 
al., 2015; Nainanayeke et al., 2016; De Castro et al., 
2015; Xavier et al., 2019). 

Khairunniza-Bejo et al. (2015) analysed the 
ground-based multispectral image for classification 
of Ganoderma disease in oil palm from frond 
number nine and found that combination of two 
bands, which were G_B and G_R, gave a significant 
difference between healthy and diseased oil palm. 
Their findings agreed with our results that band 
combinations have more capability to distinguish 
between healthy and diseased oil palm. 

Other than that, Nainanayake et al. (2016) 
developed a modified vegetation indices algorithm 
that combine R, G and two times B band to increase 
the accuracy of disease detection in coconut tree up 
to 80%. Meanwhile, Xavier et al. (2019) analysed 
the G, R and NIR bands individually to classify 
four levels of Ramulia leaf blight cotton disease 
and suggested that single band have only showed 
significant difference between healthy and severe 
level of the disease and was not accurate for early 
and moderate severity. 

Finally, the results suggested that there is 
opportunity for multispectral image using UAV 
for detection of moderate and severe infection of 
Ganoderma disease in oil palm. For future works, 
the detection of early infection of Ganoderma disease 
in oil palm using multispectral image from UAV 
should be explored using other OBIA methods 
and also hyperspectral image for early detection of 
Ganoderma disease in oil palm.

CONCLUSION AND RECOMMENDATION

In this study, the multispectral image from UAV 
were analysed using OBIA methods that integrate 
segmentation and merging with SVM classifier to 
classify oil palm into three GDSI namely T0, T2 and 
T3. The results showed different performance of each 
individual band and different band combinations 
in classification of the disease severity categories. 
The individual band showed moderate (65.5%-
76.2%) percentage of accuracy for classification of 

the GDSI. Nevertheless, the combinations of three 
bands images (G_R_RE, G_R_NIR, R_RE_NIR and 
R_RE_NIR) had shown good results (82%-91.8%) 
with G_R_NIR giving the highest accuracy. This 
study showed that the three-band combination 
of multispectral image analysed using OBIA 
analysis has the capability to detect moderate and 
severe infection of Ganoderma disease in oil palm. 
For future works, extensive experiment of OBIA 
analysis with advanced classifiers such as SVM 
and RF and advanced template matching algorithm 
should be conducted to detect early infection of 
Ganoderma disease in oil palm using multispectral 
band combinations.
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