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A PROOF-OF-CONCEPT STUDY: DETERMINING 
THE GEOGRAPHICAL ORIGIN OF CRUDE PALM 

OIL WITH THE COMBINED USE OF GC-IMS 
FINGERPRINTING AND CHEMOMETRICS
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ABSTRACT
Current administrative controls used to verify geographical provenance within palm oil supply chains require 
enhancement and strengthening by more robust analytical methods. In this study, the application of volatile 
organic compound fingerprinting, in combination with five different analytical classification models, has 
been used to verify the regional geographical provenance of crude palm oil (CPO) samples. For this purpose, 
108 CPO samples were collected from two regions within Malaysia, namely Peninsular Malaysia (32) and 
Sabah (76). Samples were analysed by gas chromatography-ion mobility spectrometer (GC-IMS) and the 
five predictive models (Sparse Logistic Regression, Random Forests, Gaussian Processes, Support Vector 
Machines and Artificial Neural Networks) were built and applied. Models were validated using 10-fold 
cross-validation. The area under curve (AUC) measure was used as a summary indicator of the performance 
of each classifier. All models performed well (AUC  0.96) with the Sparse Logistic Regression model giving 
best performance (AUC = 0.98). This demonstrates that the verification of the geographical origin of CPO 
is feasible by volatile organic compound fingerprinting, using GC-IMS supported by chemometric analysis. 
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INTRODUCTION

Palm oil obtained from the fruit of the oil palm 
(Elaeis guineensis), is the most consumed vegetable 
oil globally. In 2018, it was estimated that 68 million 
tonnes were produced globally (Statista, 2018). 
The oil palm plant originates from West Africa, 

but now grows in wild, semi-wild and cultivated 
states right across the equatorial tropics, including 
Malaysia, Indonesia, Papua New Guinea, Western 
Africa and South and Central America (Corley and 
Tinker, 2008). Two different oils are extracted from 
palm fruits, namely crude palm oil (CPO) and crude 
palm kernel oil. CPO is the main oil of commercial 
interest, being semi-solid at room temperature and 
containing high proportions of both saturated and 
monounsaturated fatty acids. These properties 
make for a versatile oil that is predominantly 
used in foodstuffs as an ingredient in thousands 
of processed foods ranging from noodles to 
chocolate. Oil palm cultivation has grown rapidly 
in recent decades due to low production costs and 
high demands from the food industry, especially 
for CPO (Corley and Tinker, 2008; Paddison 
et al., 2014). 
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The initial rapid expansion of the oil palm 
industry in Malaysia occurred by conversion of 
land from other plantation crops, mainly rubber. 
However, after 2000, large tracts of primary and 
secondary rainforests, as well as peatlands, were 
also converted especially in Indonesia. This process 
often occurred in regions of high biodiversity 
and conservation value (Koh and Wilcove, 2008;  
Meijaard et al., 2018). As a reaction to this process, 
the Roundtable on Sustainable Palm Oil (RSPO) 
was established in 2004 to improve sustainability 
and traceability of the industry. However, to a 
great extent, current traceability methods are 
largely based upon potentially fallible audit trails. 
Therefore, it is increasingly important that there 
are alternative methodologies that can be applied 
reliably within supply chains and which enable 
authentication of geographical provenance, to 
facilitate current traceability measures. 

Chemically-based methods for the 
authentication of geographical provenance of 
vegetable oils has been well studied in the case of 
olive oil but less so for other oils (Janin et al., 2014; 
Ou et al., 2015; Portarena et al., 2014). All vegetable 
oils are complex natural mixtures comprising 
of many components. Fatty acid composition 
is the most studied component for vegetable 
oil authentication (Janin et al., 2014; Korifi et al., 
2011; Tres et al., 2013). However, other important 
components can also be utilised for authentication 
including sterols, elemental isotope ratios, volatile 
organic compounds (VOC) and tocopherols. With 
the exception of isotope ratios, fingerprinting 
techniques are the most common approach for 
assessing such components, as they provide 
analytical information about a sample in a non-
selective way (Ruiz-Samblás et al., 2013). 

However, fingerprinting usually generates 
issues of ‘big data’ analysis, which require the use 
of appropriate multivariate statistics to extract the 
most important information for characterising a 
particular sample (Cumeras et al., 2015; Hauschild 
et al., 2012; Szymanska et al., 2014). Other studies 
have shown that VOC fingerprints can be useful 
for discerning vegetable oils by geographical origin 
because their quality and composition depend 
on several factors, including genetic variety, 
growing conditions, processing technologies and 
storage (Tres et al., 2011). In the case of palm oils, 
the composition may be significantly affected 
by seasonal variation, fertilisation regime, oil 
processing techniques, etc.

In this work, gas chromatography-ion mobility 
spectrometer (GC-IMS) was used to generate VOC 
fingerprints. IMS was initially developed in the 
1970s for detection of explosives and chemical 
warfare agents. It relies upon the separation 
of charged particles in an electric field, with 
separation depending upon mass, shape, size and 

collisional cross-sectional area (Eiceman et al., 
2016) of each ion cluster. However, ion mobility 
spectrometers typically have low resolution due 
to overlapping signals resulting from ion-ion or 
ion-molecule reactions in the ionisation process 
(Garrido-Delgado et al., 2011). In this work, we 
explored the use of an IMS. The method is therefore 
often coupled with other techniques for fast pre-
separation, usually a standard GC column, as is 
the case in this study. GC-IMS is now increasingly 
applied in the environmental, biomedical and food 
and flavour industries due to its selectivity and 
sensitivity, time of analysis, small footprint, low 
cost and its ability for easy on-site implementation 
by relatively unskilled operatives, meaning it is 
potentially accessible to laboratories worldwide. 

The present work is one of only a few studies 
that have sought to characterise CPO samples 
by geographical origin. Four previous studies 
have sought to do this on a continental scale 
(South-east Asia vs. South America vs. Africa) 
(Obisesan et al., 2017; Pérez-Castaño et al., 2015; 
Ruiz-Samblás et al., 2013; Tres et al., 2013) and one 
study was on a regional scale (central Malaysia 
vs. northern Malaysia vs. east coast Malaysia vs. 
southern Malaysia vs. east Malaysia) (Muhammad 
et al., 2017). While, GC-IMS has previously been 
used to distinguish different olive oil samples by 
grade (Garrido-Delgado et al., 2015; 2011), to our 
knowledge this study is the first time GC-IMS has 
been used for palm oil analysis. Here we describe 
the application of chemometrics to raw GC-IMS 
chromatograms to successfully establish models for 
the prediction of regional geographical provenance 
of CPO samples in Malaysia.

MATERIALS AND METHODS

Palm Oil Samples

A total of 108 palm oil samples were provided 
by the Wageningen University of Research (WUR), 
The Netherlands. These samples had been collected 
from various mills across Peninsular Malaysia and 
the state of Sabah in North Borneo. A total of 32 
samples originated from Peninsular Malaysia 
whilst 76 originated from Sabah. Samples were 
stored at 4°C until analysis. 

Sample Preparation

No pre-preparation or derivatisation of samples 
is required prior to GC-IMS analysis. CPO samples 
were melted at 45°C to enable aliquoting of 1 g to a 
20 ml glass headspace vial and vials were secured 
with a magnetic screw cap, sealed with a PTFE/
silicon septum. Samples were pre-conditioned at 
60°C and 275 rpm for 15 min, via an integrated 
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sample introduction system (SIS) unit (CTC-
PAL, CTC Analytics AG, Zwingen, Switzerland) 
to ensure equilibration between the sample and 
headspace. The 200 µl of sample headspace was 
directly injected into the GC-IMS system via a 2.5 
ml Hamilton syringe with a 51 mm needle.

GC-IMS Analysis 

All CPO analyses were performed on a 
commercially available GC-IMS instrument (model, 
FlavourSpec©) from Gesellschaft für Analytische 
Sensorsysteme mbH (G.A.S., Dortmund, 
Germany). The headspace sample was injected 
via a heated splitless injector on to a low polarity 
GC column consisting of 9%-diphenyl – 95% 
dimethylpolysiloxane of 15 m length, an internal 
diameter of 0.53 mm and 1 m of film thickness (FS-
SE-54-CB-1 of CS-Chromatographie Service GmbH, 
Düren, Germany) facilitated by Nitrogen (6.0) 
carrier gas. The analytes enter the ionisation region 
and undergo soft ionisation via a cascade reaction 
by a Tritium H3 radioactive ionisation source of 300 
MBq.

Ion swarms are released into the drift region 
though a Bradbury Nielsen gate (grid pulse width 

of 100 μs and a sampling frequency of 150 kHz) 
when the electric field strength of the grid set of 
the shutter is weakened or eliminated. Ions travel 
towards the detector (Faraday plate) against an 
opposing drift gas (Nitrogen 6.0) and are separated 
based on mass, charge, size and cross-sectional 
collision surface area, due to the presence of an 
electric field. Subsequently, different ions reach the 
detector at different times, with each component 
having a specific IMS drift time. 

IMS data were acquired in positive mode 
using Laboratory Analytical Viewer (LAV) 
software (v.2.0.0) from G.A.S (G.A.S, 2018). Each 
spectrum had an average of six scans, obtained 
using a repetition rate of 30 ms. Instrumental and 
experimental parameters for CPO analysis are 
displayed in Table 1. Working principles of the 
FlavourSpec© are displayed in Figure 1. 

Data Analysis

GC-IMS spectral data was exported into 
comma separated values (CSV) format for data 
processing (typically 11 000 000 data points per 
file). The general workflow is summarised in 
Figure 2 and was developed in R (v 3.0.2). A number 

TABLE 1. INSTRUMENTAL AND EXPERIMENTAL PARAMETERS FOR CRUDE PALM 
OIL (CPO) ANALYSIS

Parameter Values and units

Sample Introduction System (SIS)

Sampling type/volume Headspace (200 µl)

Agitation time 15 min

Incubation temperature 60oC

Syringe temperature 80oC

Column

Injector temperature 80oC

Capillary column SE-54 (low polar) ID 0.53 mm, 1 μm

Column length 15 m

Column temperature 40oC

Gas chromatography (GC) run time 16 min

Carrier gas flow rate T= 0-10 min: 2 ml min–1 to 50 ml min–1

T= 10-15 min: 50 ml min–1 to 150 ml min–1

T= 15-16 min: 150 ml min–1

(N2 6.0)

Ion mobility spectrometer (IMS)

Ionisation source Tritium (30 MBq)

Voltage Positive drift

Drift length 9.8 cm

Electric field strength 510 V cm–1

Drift gas flow rate 150 ml min–1

IMS temperature 45°C
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of pre-processing steps were undertaken prior to 
chemometric analysis. The first step cropped an 
area of interest, reducing data points by a factor of 
10. All data were aligned in the x-axis relative to the 
Reactant Ion Peak (RIP) position of the first file and 
thresholding to remove background was followed 
by x/y realignment, further reducing the number of 
data points to below 100 000. At this stage, a 10-fold 
cross validation technique was applied. In each fold, 
around 90% of the data was used as the training 
set. Within the training set, features were identified 
using a Wilcoxon rank-sum between the two groups 
(Sabah vs. Peninsular Malaysia). One hundred 
features (data points) with the lowest p-values 
were retained and used to construct the models. 
This model was then applied to the remaining test 
set and this was repeated until each sample has a 
prediction as a test sample (Martinez-vernon et al., 
2018). The five classification models used in this 
study are listed below:

•	 Sparse Logistic Regression;
•	 Random Forests;
•	 Gaussian Processes;
•	 Support Vector Machines; and
•	 Artificial Neural Networks.

RESULTS AND DISCUSSION

Examples of the GC-IMS spectra obtained from 
Sabah and Peninsular CPO samples are shown 
in Figure 3. GC-IMS analysis results in a three-
dimensional topographic plot where the x-axis 
represents IMS drift time (ms), the y-axis represents 
GC retention time (s) and the z-axis represents peak 
height/intensity (V). Due to the three-dimensional 
nature of the data, each spectrum contains around 
11 million data points making visual comparison 

of different samples arduous and inefficient. 
Furthermore, distinguishing less intense but 
perhaps important signals is not possible as they 
may not be readily apparent above the background 
noise. This is why the application of chemometrics 
was required in order to process data automatically, 
to reduce dimensionality and size, and to build 
classification models for discerning CPO samples 
by geographical origin (Sabah vs. Peninsular 
Malaysia).

The five different classification models (Sparse 
Logistic Regression, Random Forests, Gaussian 
Processes, Support Vector Machines, Artificial 
Neural Networks) include both linear and non-
linear methods. A single classification model 
was not selected for this study as the dataset was 
relatively small and until larger data sets can be 
tested, it is recommended that multiple classifier 
models should be used. In order to quantify the 
quality of classification results, several performance 
features were proposed as metrics. The estimation 
of such metrics is based upon the classifiers ability 
to distinguish classes correctly and to subsequently 
avoid classification failure (Martinez-vernon et al., 
2018). The different quality metrics used in this 
article for evaluating the classification results are 
shown below (Pérez-Castaño et al., 2015):

•	 Area under curve (AUC): the area under the 
receiver operating characteristic (ROC) curve 
is a measure of the quality of classification 
models that can summarise the performance 
of a classifier into a single metric. Its value 
varies between 0 and 1, although values 
should generally be greater than 0.5.

•	 Sensitivity: also known as the true positive 
rate and measures the proportion of actual 
positives that are correctly identified as such. 
The range of values for this feature is 0 to 1.

Figure 1. A diagrammatic overview of the working principles of gas chromatography-ion mobility spectrometer (GC-IMS).
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•	 Specificity: also known as the true negative 
rate and measures the proportion of actual 
negatives that are correctly identified as such. 
The range of values for this feature is between 
0 and 1. 

•	 p-value: a measure to determine the 
significance of the results. p 0.05 typically 
indicates strong evidence against the null 
hypothesis meaning the result is significant.

All five models produced strong results for 
discerning Sabah and Peninsular Malaysia CPO 
samples (AUC  0.96) meaning they could correctly 
distinguish between samples at least 96% of the time. 
However, the Sparse Logistic Regression method 
performed best (AUC 0.98) (Table 2 and Figure 4). 
Since GC-IMS is a rapid, sensitive and selective, cost-
effective and non-destructive technique, which can 
be readily implemented on-site, it could be proposed 
as an initial screening technique for the geographical 
origin of CPO, prior to the utilisation of more costly 
and time-consuming targeted techniques.

Whilst the aim of this study was to assess the 
use of GC-IMS as a fingerprinting approach for 
discerning samples by origin, the pipeline used 
in this study allowed for feature extraction to 

identify significant data points involved in the 
classification. For example, several data points may 
have formed a single peak that was only present in 
one group of samples and not the other, therefore 
it might have been of interest to identify this peak 
using the NIST2014 database and IMS library. 
However, in this study, there was no correlation 
between specific features and individual spectral 
peaks. The features with the greatest variance 
were spread across the spectra and likely 
represented global changes in total profiles, 
making peak picking and subsequent compound 
identification difficult. Nevertheless, this study 
has shown GC-IMS combined with chemometrics 
to be a feasible fingerprinting approach for 
discerning between CPO samples from Sabah 
and Peninsular Malaysia. Further work should be 
conducted on a larger sample size to increase the 
likelihood of detection of a specific geographical 
marker using feature extraction, followed by 
compound identification using NIST2014 and IMS 
databases.

Sample and group size have been major 
limitations in all previously published studies in 
this area. Our study is only one of two which has 
successfully discerned CPO samples by region of 

Figure 2. An overview of the general workflow used for classifying gas chromatography-ion 
mobility spectrometer (GC-IMS) data into Sabah or Peninsular Malaysia classes.

GC-IMS sample analysis

Data export to .csv export

Cropping: data point reduction 
from 11 million to 1.5 million

RIP realignment: align all data 
files to the RIP position fo the 

first file (x-axis scaling)

Background removal and 
thresholding (value set at 0.05)

x/y realignment

Performance metrics

Cross-validation
Model 

predictions
Select training 

and test samples

Feature 
selection

Classification 
model 
training

Classification models:
- Sparse Logistic Regression
- Random Forest
- Gaussian Processes
- Support Vector Machines
- Neural Networks

Data pre-processing

Note: RIP - reactant ion peak.
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Figure 3. A side-by-side comparison of typical gas chromatography-ion mobility spectrometer 

(GC-IMS) spectra from Sabah (a) and Peninsular Malaysia (b) crude palm oil samples.

Figure 4. Examples of the receiver operating characteristics (ROC) curves, summarising the performance of each model used in study. 

TABLE 2. MODEL PERFORMANCE COMPARISON FOR 100 FEATURES

Model Area under curve (AUC) Sensitivity Specificity p-value

Sparse Logistic Regression 0.98 (95% CI: 0.96-0.99) 0.94 (95% CI: 0.87-0.98) 0.92 (95% CI: 0.88-0.95) <0.01

Random Forest 0.97 (95% CI: 0.96-0.99) 0.96 (95% CI: 0.90-0.99) 0.84 (95% CI: 0.84-0.93) <0.01

Gaussian Process 0.96 (95% CI: 0.95-0.98) 0.91 (95% CI: 0.83-0.96) 0.91 (95% CI: 0.87-0.95) <0.01

Support Vector Machine 0.96 (95% CI: 0.93-0.99) 0.95 (95% CI: 0.88-0.98) 0.95 (95% CI: 0.92-0.98) <0.01

Artificial Neural Network 0.97 (95% CI: 0.96-0.99) 0.95 (95% CI: 0.88-0.98) 0.95 (CI: 0.92-0.98) <0.01
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origin and is the first to do so using a fingerprinting 
approach combined with chemometrics, on a much 
larger sample set. Nevertheless, even in this work, 
sample set is still a limitation because recommended 
minimum group size for chemometric analysis 
to be statistically significant is 30, which is close 
to that of the Peninsular Malaysia group (n=32). 
Furthermore, due to the availability of samples, 
group size in this study is not optimally balanced, 
meaning bias may be introduced. Any further work 
should be conducted on larger and better balanced 
groups. Nonetheless, this study has demonstrated 
promising results using the provided sample set 
and has shown that increased spatial specificity can 
be obtained. Further work should be conducted 
using CPO from the same mills/regions, but 
further studies should also ensure that samples 
are collected and analysed continuously over long-
term periods of several months to years in order 
to capture as much variation as possible. In this 
way, it will be possible to successfully validate 
such approach and train predictive models more 
effectively.

Analytical methods for verification of 
geographical provenance of palm oils will have 
positive implications within the industry and will 
support and strengthen the current administrative 
controls in place. Whilst VOC fingerprinting is a 
well-studied approach and has been successfully 
used for other vegetable oils, further work should 
be undertaken annually, using as many authentic 
samples as possible, to assess the impact of seasonal 
variation, changes in fertilisation regime, changes 
in processing, etc. 

CONCLUSION

Fingerprinting approaches combined with use of 
appropriate multivariate statistics (chemometrics) 
is common practice for authentication of 
foodstuffs. However, this is the first study of 
its kind that has shown that the application of 
chemometrics to raw chromatograms of GC-IMS 
data, is effective for discerning CPO samples by 
regional geographical provenance. 

A single classification model was not selected 
for this study as the dataset is relatively small, 
alternatively five different models (linear and non-
linear) were used and should continue to be used 
until a large enough dataset has been analysed. All 
models were successful in discerning CPO samples 
from Sabah and Peninsular Malaysia. Since GC-IMS 
is a rapid, sensitive and selective, cost-effective and 
non-destructive technique, which can be readily 
implemented on-site, it could be proposed as an 
initial screening technique for the geographical 
origin of CPO, prior to the utilisation of more costly 
and time-consuming targeted techniques. 

Such analytical methods for verifying the 
geographical provenance of palm oils will have 
positive implications within the industry and 
will support and strengthen the administrative 
controls currently in place (Goggin and Murphy, 
2018). This is only one of a few which have sought 
to distinguish crude palm oils by geographical 
origin and is only the second to do so on a regional 
level and the only one using GC-IMS. Whilst VOC 
fingerprinting is a well-studied approach and has 
been successfully used for other vegetable oils, 
further work should be undertaken annually to 
assess the impact of seasonal variation, changes 
in fertilisation regime, changes in processing, 
etc. A larger sample set should also be studied to 
determine whether further spatial specificity can be 
obtained (i.e. at mill or plantation level).
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