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INTRODUCTION

A range of technical approaches have been used for 
the analysis of metabolites in biological samples 
including liquid chromatography-mass spectrometry 
(LC-MS). The technological advancement of LC-MS 
has been extensively reviewed elsewhere (Hayden 
et al., 2019; Yuan et al., 2019; Robison et al., 2018) 
and increasingly become leading-edge instrumental 
developments due to its high sensitivity for the 

detection of metabolic signatures in the analysis 
of pathogen (Chen et al., 2019; Tugizimana et al., 
2019). LC-MS analysis generates information-rich 
multivariate datasets comprising of samples and 
variables that provide insight into the relationship 
of metabolites and changes in the status of complex 
biological systems and events. To interpret the 
underlying information within the complex LC-MS 
datasets towards reliable conclusions, it is of great 
importance that a practical and organised statistical 
modelling tool is applied.

The multivariate statistical analysis and data 
mining approaches for pattern discovery have 
facilitated information retrieval from the vast amount 
of biological data (Ivosev et al., 2008; Jonsson et al., 
2005; Holmes and Antti, 2002). Principal component 
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ABSTRACT
Liquid chromatography-mass spectrometry (LC-MS) has become a powerful analytical technique for 
studying broad coverage of chemical datasets describing complex biological systems and events. In order 
to interpret the underlying information in such datasets, multivariate analysis method such as principal 
component analysis (PCA) is crucial for multiple sample comparisons and multivariate data reduction. 
PCA has been used for evaluation of large-scale datasets derived from LC-MS analysis of fungal metabolites 
for many applications. Therefore, in this study, we describe on PCA as a descriptive tool to cope with large 
LC-MS datasets of intracellular metabolites of oil palm basal stem rot (BSR) fungal pathogen, Ganoderma 
boninense from in vitro liquid culture system. The results revealed a classification and grouping of  
G. boninense intracellular metabolites according to time trend, where the primary metabolites, i.e. glucose, 
gluconic acid, mannitol and malic acid were found differentially expressed in G. boninense. The presented 
findings suggest that the PCA model provides a general approach for handling, analysis and interpretation 
of large LC-MS datasets to reveal time-dependent changes of intracellular metabolites that may indicate  
G. boninense developmental process in vitro.
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analysis (PCA) is a popular dimension reduction 
method to reduce high-dimensional data into a low-
dimensional subspace component (DesRochers et 
al., 2020; Gotthardt et al., 2019; de Falco et al., 2019; 
Diana and Tommasi, 2002). The information needs 
to be interrogated in a way that enables scientists to 
make a prediction and increases the interpretability 
of the large datasets, at the same time, minimising 
the loss of important information. Furthermore, 
PCA provides knowledge on the nature of the 
variables and assigns a large number of variables 
to a smaller number of groups that can be more 
readily visualised and understood (Ivosev et al., 
2008).

Ganoderma boninense is a well-recognised 
basidiomycete fungal pathogen associated with 
oil palm basal stem rot disease (Chong et al., 2017) 
that causes significant economic losses by reducing 
the yield of fresh fruit bunches. The ability to 
generate and mine large-scale datasets of biological 
molecules, i.e. proteins, metabolites combined with 
recent advances in high-throughput instrumentation 
analysis and data mining tools may have a 
profound effect on the systems-level understanding 
of the pathogenicity of G. boninense (Othman et al., 
2019). Multivariate statistical analysis and data 
mining such as PCA has been used to evaluate 
large-scale datasets derived from LC-MS analysis 
of fungal metabolites for many applications, i.e. 
differentiation of virulent and avirulent species, 
assessment of metabolic behaviour in different 
culture environments and evaluation of metabolic 
difference in spores and mycelia (DesRochers et al., 
2020; Siless et al., 2018; Son et al., 2018; Liu et al.,  
2015). Harnessing the complexity of the 
metabolomics data derived from the various 
analytical platforms remains as major challenges in 
metabolomics. To the best of our knowledge, up to 
now, there are no studies reported on the statistical 
evaluation and data mining of large-scale datasets 
from the G. boninense pathogen.

In that perspective, our study aimed to focus 
on multivariate statistical evaluation using PCA to 
cope with the large-scale LC-MS datasets from the 
G. boninense intracellular metabolites. This approach 
is important for a robust and reliable comparison 
of G. boninense intracellular metabolites measured 
over time using statistical strategy applied to the 
complex LC-MS datasets.

MATERIALS AND METHODS

Chemicals and Reagents

Acetonitrile, methanol and acetic acid of high 
performance liquid chromatography (HPLC) 
grade were purchased from Merck, Germany. 
Difco™ potato dextrose agar (PDA) and Difco™ 

malt extract broth (MEB) were purchased from 
Becton, Dickinson and Company (BD), USA. 
Ammonium phosphate monobasic [(NH4)H2PO4], 
ammonium phosphate dibasic [(NH4)2HPO4], 
potassium phosphate monobasic (KH2PO4), 
magnesium sulphate heptahydrate MgSO4.(7H2O), 
iron (III) sulphate heptahydrate (FeSO4.7H2O), 
zinc sulphate heptahydrate (ZnSO4.7H2O), sodium 
molybdate dihydrate (NaMoO4.2H2O), copper (II) 
sulphate pentahydrate (CuSO4.5H2O), manganese 
(II) chloride tetrahydrate (MnCl2.4H2O), 
2-N-morpholinoethanesulphonic acid (MES) and 
glucose (≥99.5%) were purchased from Sigma-
Aldrich, USA. Water was purified by a Milli-Q 
system (Millipore, USA).

Fungal Material Preparation and Liquid Culture 
Condition

 
Ganoderma boninense isolate PER71 was 

obtained from the Plant Pathology and Biosecurity 
Unit, Malaysian Palm Oil Board, Bangi, Selangor,  
Malaysia. G. boninense liquid culture protocol was 
previously described by Rees (2006). G. boninense 
was grown on Difco™ PDA (Becton, Dickinson and 
Company, USA) plate and incubated at 27 ± 1°C for 
eight days. A plug of 9.5 mm of G. boninense was 
harvested from eight days old culture on PDA 
plate. Biological replicates for each G. boninense 
were grown by inoculating one plug from each 
six individual PDA plates into 50 ml of MEB 
(Becton, Dickinson and Company, USA) in 175 cm3 
Nunclon™ cell culture flask (ThermoFisher 
Scientific, USA). A total of six mycelial plugs were 
grown in the cell culture flask at 27 ± 1°C for six 
days. After six days, the G. boninense mycelial 
plugs were then collected on sterile filter paper, 
washed three times with sterile distilled water 
and inoculated into the 50 ml of growth medium 
supplemented with carbon and nitrogen sources in 
175 cm3 Nunclon™ cell culture flask (ThermoFisher 
Scientific, USA). The growth medium consisted 
of: 0.9 g (NH4)H2PO4; 2.0 g (NH4)2HPO4; 1.0 g 
KH2PO4; 0.5 g MgSO4.(7H2O); 1 ml of 100x trace 
elements (1.11 g FeSO4.7H2O, 5.75 g ZnSO4.7H2O, 
0.09 g NaMoO4.2H2O, 0.1 g CuSO4.5H2O and 0.21 g 
MnCl2.4H2O in 200 ml distilled water); 3.9 g 
2-N-morpholinoethanesulphonic acid (MES) pH 
5.5; 5.0 g glucose in 1 litre distilled water. The 
culture was grown at 27 ± 1°C. The G. boninense 
intracellular metabolites were sampled over time, 
on Days 2, 4, 6 and 8 for analysis.

Metabolite Extraction
 
The G. boninense mycelia containing 

intracellular metabolites were freeze-dried for 
two days using a FreeZone® Freeze Drier System 
(Labconco, USA). About 0.1 g of the powdered 
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mycelia was dissolved in 5 ml of methanol (Merck, 
Germany), vortexed for 1 min and sonicated 
for 15 min. The mixture was then centrifuged at 
89 x g for 15 min at 25°C. The supernatant was 
collected and the pellet was re-extracted with 5 ml 
of methanol, vortexed for 1 min, sonicated for 15 
min and then centrifuged at 89 x g for 15 min at 
25°C. The supernatant was collected and pooled 
with the previous supernatant and dried under 
a nitrogen stream. The extract was dissolved in 
3 ml of methanol (Merck, Germany) and filtered 
through a 0.2 μm cellulose acetate Minisart syringe 
filter (Merck, Germany). The filtered extracts were 
stored at -20°C before analysis. An aliquot of  
10 μl was subjected to LC-MS analysis.

 
Liquid Chromatography-Mass Spectrometry 
(LC-MS)

 
Ganoderma boninense intracellular metabolites 

were separated using the Ultimate 3000 HPLC 
(Thermo Scientific, USA), where the separation 
was achieved on a Reversed-Phase Acclaim™ 
Polar Advantage II (C18 4.6 × 250 mm length,  
5 μm particle size) (Thermo Scientific, USA). 
With a gradient elution program at a flow rate 
of 1.0 ml min–1 and an injection volume of 5 μl, 
the chromatographic separation was performed 
at 37°C. The mobile phase A was an aqueous 
solution containing 0.1% (v/v) acetic acid (Merck, 
Germany) and mobile phase B was acetonitrile 
(Merck, Germany) containing 0.1% (v/v) acetic 
acid (Merck, Germany). The gradient program 
was started at 5% of B and increased linearly to 
60% of B for 22 min. To minimise the carry-over 
between injections, the column was washed for 
5 min and equilibrated for 2 min. Blank water 
injection was applied in-between the sample 
injection. All samples and replicates were injected 
simultaneously as one batch in random order 
to distinguish between technical and biological 
variations. 

For the MS analysis, the HPLC system was 
coupled to a MicrOTOF-Q™ quadrupole-time-of-
flight (QTOF) mass spectrometer (Bruker Daltonik, 
Germany) with an electrospray ionisation (ESI) 
interface operating in negative ion mode and 
controlled by the HyStar Application version 3.2 
software (Bruker Daltonik, Germany). The column 
effluent was set at 1.0 ml min–1. A split ratio of 1:4 
was used, so the flow arriving at the detector was 
250 μl min–1. Nitrogen was used as nebulising 
gas at 4.1 bar and 9.0 litre min–1 flow rate. The 
temperature and voltage of the capillary were 
set at 200ºC and + 3.5 kV, respectively. The full 
MS scan covered the mass range of 50-1000 m/z. 
Tandem mass spectrometry (MS/MS) parameters 
were set to improve mass fragmentation, with 
collision energy varying from 15-35 eV.

LC-MS Data Evaluation and Principal Component 
Analysis (PCA)

 
LC-MS data evaluation was performed with 

DataAnalysis version 4.2 for chromatogram 
analysis and ProfileAnalysis version 2.1 (Bruker 
Daltonik, Germany) for PCA. Compounds in 
the raw LC-MS data were extracted using MS 
algorithm version 3.0, sensitivity 99%, absolute 
intensity of 1000 and minimum peak valley of 10% 
under Find Compounds – Chromatogram module 
in DataAnalysis version 4.2, for comprehensive 
detection of all compounds in LC-MS run. PCA was 
performed based on bucket tables of the MS data. The 
data was integrated from 2.0-22 min and 50.5-999.5 
m/z in time- and m/z-buckets using time alignment 
parameters and spectral background subtraction in 
the advanced bucketing approach. The multivariate 
statistics, PCA, was performed where data were 
Pareto scaled. The LC-MS data were then normalised 
to the sum of bucket values for an analysis, which 
considered the total intensity in analysis and suitable 
for unknown samples. A full cross and test set 
validations were applied to validate the PCA model. 
In ProfileAnalysis version 2.1 (Bruker Daltonik, 
Germany), the SmartFormula module was used to 
process the accurate mass data of molecular ions. The 
list of possible elemental formulas that use CHNO 
algorithm such as minimum/maximum elemental 
range, electron configuration, ring-plus double bond 
equivalents and comparison of the theoretical with 
measured isotope patterns was provided in the 
module. Compounds identified were categorised 
based on MSI (Metabolomics Standard Initiative) 
(Sumner et al., 2007).

RESULTS AND DISCUSSION

One of the challenges in LC-MS metabolomics 
studies is data analysis and metabolite annotation, i.e. 
identifying biological molecules from mass spectral 
data. The highly sensitive LC-MS platform allows 
the simultaneous detection of multiple analytes 
combined with data processing workflow using 
ProfileAnalysis analysis including peak picking, 
filtering, normalising and statistic analysing (Mamat 
et al., 2018; Veeramohan et al., 2018; Mazlan et al., 2018; 
Tahir et al., 2016). In this study, the number of peaks 
detected from G. boninense intracellular metabolites 
were increased over time, until Day 6 and decreased 
at Day 8 (Figure 1). The metabolites measured over 
time were further analysed using PCA.

Validation of Ganoderma boninense Intracellular 
Metabolite PCA Model

 
PCA was used as a processing tool to enable 

robust interpretation of large-scale data from the 
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G. boninense intracellular metabolites. Moreover, 
validation methods are crucial for the evaluation of 
model performance and prediction ability (Diana 
and Tommasi, 2002). The rule of cross validation 
(CV) technique is to test the significance and to 
correct the confidence limits and was applied to 
the PCA model for the G. boninense intracellular 
metabolites. As shown in Figure 2, full CV was 
applied to compare the predicted values with the 
actual ones. The influence plot of a PCA model for 
the G. boninense intracellular metabolites showed 
similar results before (a) and after (b) validation, 
where, no outlying behaviour outside the quadrant. 
This indicated the significance of the model at 95% 
confidence interval.

Besides, a test set validation of a PCA model 
was also applied to check the stability of the 
current model. Test set validation is suitable for 
large datasets (>50) (Kos et al., 2003). Figure 3 
shows the influence plot of the original G. boninense 
intracellular metabolites PCA model (Figure 3a) 
and the new model after validation (Figure 3b). The 
new model described the test set analyses well, 
where the basic appearance of the scores plot did 
not change. This indicated the initial set of analyses 
all together resulted in a good and valid model.

Ganoderma boninense Intracellular Metabolite 
PCA Model

 
Large multivariate datasets generated from 

the LC-MS analysis of G. boninense intracellular 

metabolites require pattern recognition techniques 
that filter the important information from different 
time points and detect compounds that contribute to 
the groupings according to time trend. In this study, 
therefore, we employed an unsupervised method 
such as PCA to summarise the multidimensional 
data as well as to capture most of the variance in 
the datasets. PCA is a mathematical projection 
technique designed to extract many variables, 
displays and ranks the variance in a reduced data 
matrix (Jolliffe and Cadima, 2016). Furthermore, 
PCA extracts relevant statistics on the distribution 
of samples and group characteristics (Lazar et al., 
2015).

PCA is one of the most important and powerful 
methods in chemometrics (Bro and Smilde, 2014). 
Besides, it can also identify the effects of technical 
variation in the analysis of metabolic profiles, 
which is crucial for data quality evaluation in 
metabolomics studies (Gika et al., 2014; Yin et al., 
2013). Following the pre-processing LC-MS data 
of the G. boninense intracellular metabolites, PCA 
allowed a descriptive evaluation of the samples 
distribution in order to assess the data quality 
and to identify natural groupings, patterns and 
outliers as explained and described in other reports 
(Tugizimana et al., 2019). The samples presented 
in the PCA scores plot in Figure 4a showed close 
clustering between data points for each time 
interval. This indicated a good quality, stability, 
reliability and reproducibility of the analyses. 
The scores plot displays the relationship between 

Figure 1. The liquid chromatography-mass spectrometry (LC-MS) base peak chromatograms (BPC) of Ganoderma boninense extracellular 
metabolites at each time point of Day 2 (a), 4 (b), 6 (c) and 8 (d). The highest number of 37 peaks were detected at Day 6, followed by Day 8 with 33 
peaks, Day 4 with 28 peaks and Day 2 with 15 peaks.
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G. boninense intracellular metabolites harvested at 
the different time intervals of Days 2, 4, 6 and 8.

Furthermore, in PCA, a linear transformation 
of the metabolic features in specific directions is 
called principal components, where they are taken 
seriously in explaining the most variation of the first 
component, followed by the second component, etc. 
(Jolliffe and Cadima, 2016; Alonso et al., 2015). In 
this study, as shown in the scores plot, PC1 and PC2 
explained 87.6% of the total variance present in the 
dataset. The first principal component summarises 
the global dataset since it captures most of the dataset 
variability in feature/metabolite patterns based on 
their similarity (Alonso et al., 2015). In our results, 
PCA models revealed distinct time trend groupings 
in the G. boninense intracellular metabolites. Here, 
clear sample groupings indicate dynamic changes 
occurring in G. boninense developmental process 
in vitro, and observed as time-dependent stages, 
related by the time trend which was revealed 
by PC analyses (Figure 4b). PCA, as a standard 
model to deal with high-dimensional and complex 
metabolomics data, proved to uncover time-trends 

in a dataset (Tugizimana et al., 2019). The PCA 
loadings plot (Figure 4b) represents 375 buckets 
(time and m/z) included in the PCA model. In this 
model, the four buckets that are far away from the 
central cloud are responsible for the variance within 
the dataset; (1) rT 3.6 min, m/z 179.0560, (2) rT 4.5 
min, m/z 195.0514, (3) rT 2.9 min, m/z 181.0719 and 
(4) rT 6.6 min, m/z 133.0144. 

Ganoderma boninense Intracellular Metabolite 
Signatures

 
From the PCA loadings plot analysis, four 

metabolites that were located far away from the 
central cloud, which were responsible for the  
variance within the dataset were selected and 
identified as differentially expressed metabolites. 
Metabolites were assigned as (1) glucose (m/z 
179.0560), (2) gluconic acid (m/z 195.0514), (3) 
mannitol (m/z 181.0719) and (4) malic acid (m/z 
133.0144) based on SmartFormula (Bruker Daltonik, 
Germany), comparison against KEGG database and 
tandem MS (MS/MS) (Table 1). MS/MS spectra and 

Figure 2. Full cross validation of Ganoderma boninense intracellular metabolite principal component analysis (PCA) model. Influence plots (a) 
before and (b) after validation show no outlying behaviour outside the quadrant and indicated the significance of the model at 95% confidence interval.

Figure 3. Test validation of Ganoderma boninense intracellular metabolite principal component analysis (PCA) model. The scores plot shows  (a) 
the selection of four test set analyses before (b) and after test set validation. The new PCA model (b) described the test set analyses well, where the basic 
appearance of the scores plot did not change and resulted in a good and valid model.
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chemical structures of all identified metabolites 
were presented on Figures 5-8. According to the 
PCA loadings plot, glucose showed relatively 
high abundance at Day 2 while gluconic acid, 
mannitol and malic acid showed relatively high 
abundance at Days 4, 6 and 8, respectively. Bucket 
statistics plot in the ProfileAnalysis enables a 
quick visual comparison of the differentially 
expressed metabolites according to time trend 
(Figure 9).

The differentially expressed intracellular 
metabolites in G. boninense, which were classified 
as primary metabolites, i.e. sugar and organic 
acid, play significant and essential roles in the 
growth, reproduction and development of the 
fungus. These metabolites are associated with the 
rapid initial growth phase and show maximum 

production at the end of the phase (Andersen, 
2014; Wisecaver et al., 2014; Sanchez and Demain, 
2008). Mannitol, for example, is the most abundant 
soluble carbohydrates and plays a key role as carbon 
storage/ carbohydrate reserve within the mycelium 
of fungi (Patel and Williamson, 2016; Wiemken, 
2007; Lewis and Smith, 1967). However, mannitol 
has recently been hypothesised to have a major 
role in fungal pathogenicity (Patel and Williamson, 
2016).

CONCLUSION

Ganoderma boninense is an economically important 
pathogen in oil palm where a holistic and detailed 
understanding of the pathogen biology may 

Figure 4. Principal component analysis (PCA) of the Ganoderma boninense intracellular metabolite LC-MS data. Scores plot (a) and loadings plot 
(b) of negative mode data (Pareto-scaled) from intracellular samples. Each data point in the PCA scores plot represents an analysis included in the 
PCA model. A 2-component model, explaining 87.6% of the total variation in the Pareto-scaled data at 95% confidence level, from each time point at 
Days 2, 4, 6 and 8. A clear time-related trend is observed.

TABLE 1. PROPOSED DIFFERENTIALLY EXPRESSED INTRACELLULAR METABOLITES OF
Ganoderma boninense AT DAYS 2, 4, 6 AND 8

No. rT
(min)

Metabolite KEGG ID MSI Molecular 
formula

Monoisotopic 
mass

(g mol–1)

m/z
measured

m/z 
theoretical

Error 
(ppm)

MS2 
fragments

1. 3.6 Glucose C00031 1 C6H12O6 180.06 179.0560 179.0561 0.7 161.0433, 
131.0372,
119.0374,
101.0252

2. 4.5 Gluconic 
acid

C00257 2 C6H12O7 196.06 195.0514 195.0510 -2.0 177.0398, 
159.0282,
129.0180

3. 2.9 Mannitol C00392 2 C6H14O6 182.08 181.0719 181.0718 -0.6 161.0465,
119.0334,
113.0217,
101.0222

4. 6.6 Malic acid C00711 2 C4H6O5 134.02 133.0144 133.0142 -1.4 115.0017,
89.0189

(a) (b)
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Figure 5. Negative ion mode mass spectrometry/mass spectrometry (MS/MS) spectra of glucose (m/z 179.0560, C6H12O6) at a collision energy of 
20 eV. Similar MS/MS spectra of (a) glucose in Ganoderma boninense mycelia sample and (b) glucose reference standard.

Figure 6. Negative ion mode mass spectrometry/mass spectrometry (MS/MS) spectrum of mannitol (m/z 181.0719, C6H14O6) at a collision energy of 35 eV.

Figure 7. Negative ion mode mass spectrometry/mass spectrometry (MS/MS) spectra of gluconic acid (m/z 195.0514, C6H12O7) at a collision energy of 15 eV.
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significantly improve targeted disease control 
and management strategies. The present study 
provides a necessary step for uncovering molecular 
events during the developmental process of 
G. boninense using LC-MS and multivariate 
statistical data analysis, particularly PCA. Albeit 
the interpretation of the large and complex  
LC-MS datasets of fungal metabolites is frequently 
challenging, our studies have demonstrated that 
PCA provides a robust and reliable comparison 
of temporal intracellular metabolite changes of 
G. boninense. This may indicate the dynamic changes 

occurring in G. boninense developmental process, 
in vitro. Furthermore, this information is of key 
importance that can complement the available 
transcriptomics and proteomics data of G. boninense, 
towards further understanding the G. boninense 
pathogenicity. 
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Figure 8. Negative ion mode mass spectrometry/mass spectrometry (MS/MS) spectra of malic acid (m/z 133.0144, C4H6O5)  
at a collision energy of 15 eV.

Figure 9. Bucket statistic plot of four differential metabolites observed in the loadings plot of principal component analysis (PCA) (● for Day 2, ∆ for 
Day 4, × for Day 6 and + for Day 8). (a) Glucose (C6H12O6 , m/z 179.0560), (b) gluconic acid (C6H12O7, m/z 195.0514), (c) mannitol (C6H14O6, 
m/z 181.0719) and (d) malic acid (C4H6O5, m/z 133.0144).
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