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INTRODUCTION

Oil palm (Elaeis guineensis Jacq.) is planted in an 
equilateral triangular design with a spacing of 
8.50-10.25 m (Corley and Tinker, 2003). There is 
significant variability in soil properties on the 
scale of individual palms, caused by plant features 
and management practices (Anamulai et al., 2019; 

Tinker, 1960). Oil palm is becoming an increasingly 
important crop in the tropics (Cramb and Curry, 
2012), and accurate evaluation of soil properties 
under oil palm is crucial to the industry’s 
productivity and sustainability. Consideration of 
tree-scale variability is needed for soil condition 
monitoring, fertiliser application recommendations, 
and calculations of water, carbon, and nutrient 
stock (Nelson et al., 2014; 2019).

Soil biodiversity plays a major role in the 
functioning of the ecosystem, which helps to 
maintain soil sustainability (Delgado-Baquerizo et 
al., 2020). However, information on the ecosystem 
function in different oil palm operational zones is 
still lacking. According to Carron et al. (2015), the 
zones around the palms contain varying amounts 
of soil fauna and nutrients. The samples collected 
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in any particular management zone do not describe 
anything about processes in other zones, which 
may be important for the palm. As a result of 
typical management regimes, direct linkage of 
the operational zones with the soil microbes in 
an oil palm plantation, which is crucial for many 
critical ecosystem functions, including nutrient 
cycling, carbon sequestration and plant nutrient 
uptake (Schröder et al., 2016), requires further 
investigation. 

This study involves the cultivation and 
comparison of the bacterial diversity in the peat soil 
of an oil palm plantation in Pekan, Pahang, Malaysia. 
The studied area was the four operational zones, 
which consists of the frond pile (FP), harvesting 
path (HP), weeding circle (WC), and inter palm row 
(IPR).

METHODOLOGY

Soil Sampling 

A sampling of soil for methanotrophic bacteria 
diversity study at fertilised oil palm plantation, 
Pekan, Pahang, Malaysia, was conducted from four 
operational zones consisting of FP, HP, WC and IPR 
(Figure 1) in August 2017. Sampling was done at 
the respective GPS coordinates of 3°26’09.748” N, 
103°23’23.555” E, 3°26’10.794” N, 103°23’17.438” E, 
3°26’18.062” N, 103°23’19.458” E and 3°26’17.328” N, 
103°23’28.560” E at a depth of 0-30 cm. Soil sampling 
was done in triplicates using a 5 cm internal diameter 
auger, carefully kept in the ice box, and stored at 
-80°C for further analysis. 

Enrichment Culture

The basal medium, nitrate mineral salts 
(Whittenbury et al., 1970), was used for bacterial 
consortium enrichment. 1 L of the basal medium 
was sterilised by autoclaving at 121°C for 15 min. 
Then, a total of 1 g of the soil sample was inoculated 
into a serum flask filled with a 20% capacity of 
the basal medium. Methane gas was continuously 
supplied at 10% (v/v). The culture was stirred at 
150 rpm in a shaker incubator and incubated at 
30°C for three days.

Isolation of Soil Bacteria

Nitrate mineral salt agar, nutrient agar, soil 
enriched medium, nitrogen-deficient medium, 
Pikovskaya medium, Aleksandrov medium, 
anaerobic medium and actinomycetes medium 
were used for bacterial isolation using the spread 
plate method. Isolated colonies were subcultured 
repeatedly to obtain a single type of isolated bacterial 
colony. The culture was incubated at 30°C for three 
days.

Polymerase Chain Reaction (PCR) Amplification 
of 16S Ribosomal Ribonucleic Acid (16S rRNA) 
and Purification

Isolates from plate cultures were added into 
100 µL of sterilised distilled water and boiled for 
10 min at 100°C to lyse the cells and subsequently 
amplified using PCR. The primer set used was 
forward (f) primer, 341f (5’-cct-acg-gga-ggc-agc-
ag-3’) and reverse (r) primer 907r (5’-ccc-cgt-caa-

Figure 1. Typical operational zones of a mature oil palm plantation. The pattern is repeated throughout the plantation. Operational zones are the frond 
pile (FP), where pruned fronds are placed, the weeded circle (WC), which is kept bare to facilitate harvesting, the harvest path (HP), upon which fruit is 
removed from the plantation and workers access for other management practices, and the inter palm row (IPR), is the space between palms.
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ttc-att-tga-gtt-t-3’) using the PCR program (Muyzer 
et al., 1993). The PCR was performed in 25 µL of 
reaction volume with a thermocycler (gradient) 
containing a succession of 10 pmol of each primer, 
100 mM dNTPs, 1X PCR buffer, 50 mM Mg2Cl, 0.3% 
BSA, and 2.5 units of Taq polymerase. The PCR 
started with initial denaturation at 94°C for 2 min, 
35 cycles of 94°C for 30 s, 52°C for 30 s and 72°C for 
30 s, final extension at 72°C for 2 min, and held 
at 10°C. Eluted DNA from excised agarose gel 
was purified using QIAquick gel extraction kits 
(QIAGEN, Inc., Valencia, CA, USA) according to the 
kit’s protocol.

Sequencing Analysis

The purified PCR products were sent to First 
Base Laboratories for sequencing. The nucleotide 
sequences were read using the software ChromasPro 
(www.technelysium.com.au/ChromasPro.html) 
and analysed using an online sequence database 
available at the National Center for Biotechnology 
Information (NCBI). A sequence similarity search 
was conducted using the nucleotide-nucleotide 
basic logic alignment search tool (BLASTn) in the 
NCBI GenBank database to identify the nearest 
relatives of the partially sequenced 16S rRNA genes 
of excised bands.

Statistical and Phylogenetic Analysis

Alpha diversity and principal component 
analysis (PCA) matrices scatter biplot were 
performed based on the identified isolated bacteria 
to compare the bacterial diversity in the soil samples 
among the four aforementioned operational zones 
using the PAST software program (Hammer et al., 
2001).

The nucleotide sequences determined in this 
study were aligned, and neighbour-joining trees 
were constructed using Molecular Evolutionary 
Genetics Analysis (MEGA) version 7.0  (Kumar et 
al., 2016). Neighbour-joining phylogenetic trees 
were constructed based on the 16S rRNA gene by 
using the Kimura two-parameter substitution model 
evaluated by 1000 bootstrap samplings of the data, 
and nodes with bootstrap values were indicated.

RESULTS AND DISCUSSION

Based on the data of total microbes, the Dominance 
(D) and Berger Parker indices data in Table 1 
showed that the Proteobacteria dominated the 
soil community. This is due to the highest value of 
Proteobacteria classes compared to other bacterial 
classes. Among them, β-proteobacteria was the 
most dominant, followed by α-proteobacteria and 
γ-proteobacteria. In comparison, the Shannon 
(H) index (Table 1) shows that bacilli was the most 
diverse among other bacterial classes. 

The relative abundance of the identified 
bacterial classes was plotted in Figure 2 and the 
accession number is included in Table 2. The 
Proteobacteria was the most prevalent phylum 
amongst the prokaryotic population. Firmicutes 
was the second most frequent, followed by 
Actinobacteria. The phylum Bacteroidetes for 
class Sphingobacteria could only be found in the 
HP area and was also the only site, which did not 
harbour the ß-proteobacteria. The γ-proteobacteria 
was found in the highest percentage and could be 
found within all sites with the highest occurrence 
in IPR (52%), followed by HP (32%), WC (29%), 
and FP (10%). The second prevalent class was 
α-proteobacteria, which mostly appeared in FP 
(43%), followed by HP (32%), WC (10%), and IPR 
(5%). ß-proteobacteria could be found mostly in 
WC (14%), IPR (10%), and FP (5%). Bacterial class 
of bacilli can also be found in peat soil with the 
percentage occurrence of FP (38%), WC, and IPR 
both (24%), and HP (21%). Whilst, the percentage 
of occurrences in class Actinobacteria were WC 
(24%), HP (11%), IPR (10%), and FP (5%).

PCA was used to correlate the bacterial classes 
with the operational zones (Figure 3). The differences 
between the bacterial communities can be seen 
clearly in the distribution of the bacterial classes. 
The α-proteobacteria and bacilli were generally 
clustered together in the FP. Both classes are 
essential in FP, mainly involved in decomposition 
and as an additional carbon source (Hirano et al., 
2009). The α-proteobacteria was also clustered in 
HP along with γ-proteobacteria. Most of the known 
methanotrophs belong to α-proteobacteria and 
γ-proteobacteria (Semrau et al., 2010). This is an 

TABLE 1. BACTERIAL BIODIVERSITY INDICES FOR 16S rRNA GENE LIBRARIES REPRESENTING PEAT 
SOIL SAMPLE PEKAN, PAHANG, MALAYSIA

Diversity indices

Bacterial class

Actinobacteria Bacilli
Proteobacteria

Alpha Beta Gamma

Dominance_D 0.3288 0.2653 0.3701 0.3817 0.3086

Berger-Parker 0.4800 0.3551 0.4778 0.4828 0.4228

Shannon_H 1.238 1.358 1.125 1.022 1.259
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Description Accession

Sphingomonas zeae KX682019.1

Sphingomonas paucimobilis LN867216.1

Sphingomonas zeae strain KX682019.1

Methylobacterium radiotolerans KT592238.1

Stenotrophomonas sp. KY084474.1

Methylobacterium radiotolerans KT923692.1

Pseudarthrobacter defluvii KY882049.1

Stenotrophomonas sp. KY084474.1

Sphingomonas zeae KX682019.1

Methylobacterium radiotolerans KF777382.1

Luteibacter jiangsuensis KY029044.0

Stenotrophomonas maltophilia JN592614.1

Methylobacterium radiotolerans KF777382.1

Paenibacillus barengoltzii KP704353.1

Arthrobacter defluvii FN908791.1

Stenotrophomonas maltophilia JN592614.1

Stenotrophomonas sp. KY084474.1

Luteibacter jiangsuensis KY029044.1

Luteibacter jiangsuensis KY029044.1

Staphylococcus sp. KF777547.1

Bacillus koreensis KT986105.1

Staphylococcus epidermidis KR809425.1

Bacillus subtilis JQ246902.1

Bacillus subtilis KX453903.1

Staphylococcus sp. KY865751.1

Bacillus subtilis KX453903.1

Arthrobacter chlorophenolicus GU326384.1

Moraxellaceae bacterium KF777626.1

Micrococcus luteus LN884071.1

Arthrobacter sp. KY476117.1

Pseudarthrobacter defluvii KY882049.1

Pandoraea thiooxydans CP014839.1

Moraxellaceae bacterium KF777626.1

Moraxella osloensis LT718623.1

Arthrobacter sp. KY476117.1

Brevibacillus fluminis KF958491.1

Bacillus altitudinis KY820045.1

Brevibacillus fluminis NR_116293.1

Staphylococcus hominis KP780178.1

Spirometra erinaceieuropaei LN020105.1

Bacillus altitudinis KY820045.1

Brevibacillus sp. KU578096.1

Description Accession

Brevibacillus fluminis NR_116293.1

Serratia sp. KY848325.1

Bacillus thuringiensis KU180424.1

Bacillus cereus KY029074.1

Pseudarthrobacter equi LT629779.1

Bacillus sp. JX532715.1

Pseudomonas stutzeri KF318832.1

Bacillus megaterium FJ944677.1

Brevibacillus panacihumi KU921113.1

Bacillus flexus KX853169.1

Mesorhizobium soli NR_145552.1

Luteibacter jiangsuensis KY029044.1

Burkholderia sp. JQ316420.1

Dyella yeojuensis FN796854.1

Bacillus amyloliquefaciens AB735985.1

Serratia marcescens KU522248.1

Serratia sp. KY848325.1

Rhizobium sp. KU097063.1

Methylobacterium radiotolerans KY882119.

Sphingomonas sp. FR872453.1

Ochrobactrum sp. HQ652578.1

Luteibacter jiangsuensis KY029044.1

Luteibacter jiangsuensis KY029044.1

Dyella yeojuensis FN796854.1

Methylobacterium oryzae AY683046.1

Methylobacterium radiotolerans KF777382.1

Ralstonia sp. KF777622.1

Dyella japonica AM268334.1

Methylobacterium radiotolerans KF777382.1

Luteibacter jiangsuensis KY029044.1

Amycolatopsis sp. KP232907.1

Streptomyces diastaticus KY458979.1

Burkholderia soli KP687356.1

Luteibacter jiangsuensis KY029044.1

Brevundimonas aurantiaca KC429645.1

Methylobacterium oryzae AY683046.1

Pedobacter cryoconitis KC788066.1

Massilia aurea LT718650.1

Oxalobacteraceae bacterium KM274103.1

Pseudomonas luteola KX301304.1

Dyella japonica AM268334.1

TABLE 2. SUBMITTED NCBI BLASTn BACTERIAL NAME AND ACCESSION NUMBER 
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exciting discovery since both bacterial classes were 
also reported to co-dominate the active methane-
oxidising communities in an acidic boreal peat bog 
(Esson et al., 2016). The soil structure in HP usually 
has a higher bulk density to facilitate the movement 
of labour and equipment on the plantation 
(Melling and Henson, 2011). Actinobacteria and 
ß-proteobacteria were both clustered together in 
WC, whereas γ-proteobacteria was only clustered 
in IPR. WC-clustered actinobacteria can play critical 
roles in various plant growth-promoting attributes, 
such as phosphorus solubilisation, potassium 
and zinc, and biological nitrogen fixation (Yadav 
and Yadav, 2019). Both HP and IPR showed the 
prevalent cluster of γ-proteobacteria. Further 
research needs to be conducted to unravel the role 
of γ-proteobacteria in methane mitigation in these 
two operational zones and oil palm plantations 
subsequently.

Phylogenetic tree indicated the presence of 56 
bacterial species isolated from peat soil is shown 
in Figure 4. This phylogenetic tree was constructed 
based on similar nucleotide sequences using 
BLASTn, Kimura two-parameter algorithm, and 

Figure 3. Principal Component Analysis (PCA) of bacterial classes 
isolated from oil palm peat soil at Pekan, Pahang, Malaysia.

the neighbour-joining method. The major phyla 
of Firmicutes, Actinobacteria, Proteobacteria, 
and Bacteroidetes are shown and clustered. The 
abundance presence of bacterial genus under the 
class of α-proteobacteria and γ-proteobacteria 
would be related to previous studies on their 
contribution to the global nutrient cycle. According 
to Aislabie and Deslippe (2013), the important 
genus isolated for α-proteobacteria was among 
the heterotroph and methanotrophs. The genera 
include Methylobacterium, Mesorhizobium, Rhizobium, 
and Sphingomonas. Methylobacterium plays a major 
role as a soil methane oxidiser. Both Mesorhizobium 
and Rhizobium have dual functions as nitrogen 
fixers and form a symbiotic relationship with 
legumes. In contrast, Sphingomonas can degrade 
toxic compounds like pentachlorophenol and 
polyaromatic hydrocarbons. The Pseudomonas 
genus in γ-proteobacteria was implicated in oil 
degradation studies. Under aerobic conditions, 
isolated Pseudomonas genes and enzymes can 
degrade alkanes, monoaromatics, naphthalene, and 
phenanthrene as a sole carbon source (Martirani-
Von Abercron et al., 2017).
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Figure 4. Phylogenetic tree derived from microbes isolated from peat soil at Pekan, Pahang, Malaysia. The tree was constructed based on similar 
nucleotide sequences using BLASTn, Kimura two-parameter algorithm and the neighbour-joining method. Bootstrap values (expressed as percentage 
of 1000 replications) are reported at each node. The scale bar indicates 0.1 substitutions per nucleotide positions.
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CONCLUSION

Phylum Proteobacteria dominated the peat soil in 
Pekan, Pahang, Malaysia. Proteobacteria, comprised 
of α-proteobacteria, ß-proteobacteria, and 
γ-proteobacteria, were the most dominant bacterial 
class in the FP, HP, WC, and IPR. The Proteobacteria 
community that inhabits the aforementioned 
operational zones is the crucial indicator of nutrient 
cycling, carbon sequestration and plant nutrient 
uptake for sustainable soil in oil palm plantations. 
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