CELLULOSE NANOCRYSTALS DERIVED FROM OIL PALM EMPTY FRUIT BUNCH REINFORCED NATURAL RUBBER LATEX NANOCOMPOSITES

INTAN SYAHIERA AZLI¹; AFKAR RABBANI HIDAYATULLAH HIPENI² and KHAIRATUN NAJWA MOHD AMIN*¹

ABSTRACT

Natural rubber latex (NRL) has long been used in lots of application in elastomer industry. However, finished products may develop pinholes or tear easily while being used. Thus, cellulose nanocrystal (CNC) was used as reinforcing filler in NRL to overcome this problem. CNC from cellulose derived from oil palm empty fruit bunch (EFB) was isolated via sulphuric acid hydrolysis method. The CNC concentration added to the NRL was varied at 1, 3 and 5 wt.%. The effect of CNC addition and curing temperature of 70°C and 100°C of NRL on the mechanical properties, functional group presence, glass transition temperature (T_g) and swelling behaviour of CNC/NRL nanocomposite were studied. The morphology of CNC with needle-like shape, length of 672 ± 445 nm, and diameter of 103 ± 39 nm was determined by using field emission scanning electron microscopy (FESEM). The best nanocomposites performance with low CNC loading of 1 wt.% has successfully increased the tensile strength and elongation at break with 20% and 14% of improvement, respectively at 70°C of curing temperature.

Keywords: acid hydrolysis, cellulose nanocrystals, empty fruit bunch, nanocomposites, natural rubber latex.

Received: 16 July 2021; Accepted: 31 December 2021; Published online: 15 February 2022.

INTRODUCTION

One of the most significant elastomers with interesting strength, elasticity, durability, resilience, and abrasion resistance is Natural Rubber Latex (NRL). NRL refers to the white sap that comes from the tree of *Hevea brasiliensis* and has low intensity, softens in warm weather and brittle in cold weather and is almost limited in use in its original uncured form (Vandenplas and Raulf, 2017). NRL will undergo vulcanisation, a chemical process where long chains of rubber molecules are cross-linked, transform the soft, weak plastic-like material into a strong elastic product with high and reversible deformability and good mechanical properties (Visakh et al., 2012). There are some latex products that have been carried into finished products by inadequate manufacturing processes that will result into pinholes or tear easily during the application of latex products in their field of work. The mechanical properties of NRL can be improved and tailored by crosslinking and addition of reinforcing fillers (Gopal Nair and Dufresne, 2003).

It is proven that cellulose nanocrystal (CNC) have a distinct advantage for improving the mechanical properties of nanocomposites. Favier et al. (1995) first reported on the use of CNC as reinforcing agents in polymer composites which enhanced the mechanical properties of poly(styrene-co-butyl acrylate) prepared via solvent casting processing of the corresponding latex. Their
reinforcing effect, remarkable mechanical, chemical, and biocompatible properties as well as non-toxicity, biologically inertness, low density, biodegradability, surface functional groups, etc., could facilitate the application of CNC-filled nanocomposites as advanced materials. To enhance its mechanical properties, various polymer matrixes have been strengthened by CNC including NRL. CNC reinforced from various sources like wood (Mariano et al., 2016), cotton (Tian et al., 2017) and tunicate (Cao et al., 2018) were used to reinforce NRL.

Biomass such as empty fruit bunch (EFB) was also used a lot as a source to produce CNC (Gan et al., 2020; Shanmugarajah et al., 2015; Zulnazi et al., 2017). EFB is a good potential raw material for the CNC as the lignocellulosic constituents in EFB consist of high cellulose (24-65 wt.%) (Chang, 2014). In our previous work (Supian et al., 2020), EFB was used to produce cellulose nanofibre (CNF) and it has shown promising characteristics. It is likely that similar potential can be expected with CNC produced from EFB. Up to this date, there is no work yet that reported on CNC derived from EFB as reinforcing filler for NRL as well as investigation on the effect of curing temperature towards NRL nanocomposite.

In this work, CNC isolated using sulphuric acid hydrolysis from EFB was used as reinforcing filler. The CNC with volume fraction of 1, 3 and 5 wt.% were incorporated with NRL. The curing temperature effect at 70°C and 100°C were also investigated. The CNC size and dimension were measured and the performance of CNC/NRL nanocomposites was evaluated by the thermal, mechanical and swelling properties accordingly.

MATERIALS AND METHODS

Materials

High ammonia natural rubber was bought from Kinetic Chemicals (M) Sdn. Bhd., Malaysia while CNC were extracted from EFB’s cellulose (Supian et al., 2020). Sulphuric acid (H\textsubscript{2}SO\textsubscript{4}), 98% was purchased from Sigma Aldrich. The chemicals for rubber compounding which are zinc oxide (ZnO), zinc dithiocaramate (ZDC), zinc mercapto benzothiazole (ZMBT), potassium hydroxide (KOH) and sulphur were bought from Sigma Aldrich.

Isolation of CNC

The isolation process using H\textsubscript{2}SO\textsubscript{4} is adapted from Amin et al. (2017). Cellulose from EFB was stirred with deionised water. The solid to liquid ratio for this isolation process was 1:75. The H\textsubscript{2}SO\textsubscript{4} was added slowly under vigorous mechanical stirring to cellulose until the final solution reached an acid concentration of 32%. The ice bath was used to keep the temperature below 20°C while adding the acid. The mixture was heated for 3.5 hr at 50°C. The CNC suspension was cooled and centrifuged at 4750 rpm four to five times until turbid. The suspension of CNC was dialysed against deionised water until the suspension reached the neutral state (pH~7). The CNC suspension was then subjected to ultrasonic using high intensity ultrasonic (QSonica ultrasonicator) for 30 min with an output of 500 W, a frequency of 20 kHz and amplitude of 20%. Finally, the suspension of cellulose was lyophilised then dried using vacuum freeze dryer.

Preparation of NRL Nanocomposites

The NRL was stirred with other chemicals simultaneously as listed in Table 1. Neat NRL (without CNC) compounding was stirred within 30 min with speed of 35 rpm. NRL was poured into the beaker and stirred for 6 hr at 12 rpm until deaerated. Then, the steps were repeated for NRL nanocomposite by adding CNC with concentrations of 1, 3 and 5 wt.% and was stirred for another 30 min.

CNC/NRL mixture was casted into flat glass mould and dried overnight at room temperature. Then, the dried film was dusted with calcium carbonate powder subsequently was leached for 10 min in distilled water, followed by being cured at two different temperatures, 70°C and 100°C in a convection oven under gentle purge of dry nitrogen for at least 4 hr. NRL films were rested at least 48 hr at room temperature and 50% humidity before any further characterisation (Hosseinmardi et al., 2017). All the samples were labelled as CNC/NRL XY where X was for curing temperature and Y was for wt.% of CNC.

Characterisation

Field emission scanning electron microscopy (FESEM) by JSM-7800F Schottky which operated up to 30 kV and spot of 1.3 nm was employed to

<table>
<thead>
<tr>
<th>Item</th>
<th>Weight % in nanocomposite</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNC weight (%)</td>
<td>0, 1, 3, 5</td>
</tr>
<tr>
<td>High ammonia NRL</td>
<td>96.5, 95.5, 93.5, 91.5</td>
</tr>
<tr>
<td>Potassium hydroxide solution</td>
<td>0.35, 0.35, 0.35, 0.35</td>
</tr>
<tr>
<td>Sulphur</td>
<td>1.5, 1.5, 1.5, 1.5</td>
</tr>
<tr>
<td>ZDC</td>
<td>0.75, 0.75, 0.75, 0.75</td>
</tr>
<tr>
<td>ZMBT</td>
<td>0.6, 0.6, 0.6, 0.6</td>
</tr>
<tr>
<td>ZnO</td>
<td>0.3, 0.3, 0.3, 0.3</td>
</tr>
</tbody>
</table>
analyse morphology and dimension of CNC. The sample was prepared in powdery form and coated with platinum. The thermal stability of CNC was studied using a Mettler Toledo TGA/DSC1 using aluminium crucible standard 40 μL. A heating rate of 10°C min\(^{-1}\) from 30°C to 700°C in air atmospheric condition was used. The \(N_2\) flow rate was 20 mL min\(^{-1}\). Thermal degradation behaviour was then evaluated based on the weight loss against temperature. FT-IR was conducted on Spectrum 100 FT-IR to observe the changes in chemical bonding in NRL before and after the incorporation of CNC. The experiments were conducted with resolution being 4 cm\(^{-1}\) and the spectra was collected from 4000 to 500 cm\(^{-1}\).

The tensile testing of the composites was performed at room temperature using an Instron model 5543 universal testing equipped with 500 N load cell. The sample was cut into dumbbell shapes specimens according to ASTM D-412 (Varghese et al., 2004). The specimens of 40 mm length and 5 mm width were tested at a crosshead speed of 50 mm min\(^{-1}\), which corresponded to an initial strain rate of 10% min\(^{-1}\). A differential scanning calorimeter (DSC) Model Q1000 from TA Instruments was used to determine the thermal behaviour of CNC/NRL nanocomposite. All samples were analysed from -80°C to 500°C, at heating rate of 10°C min\(^{-1}\) (Hajji et al., 1996). The toluene-swelling behaviour of the nanocomposites was conducted in toluene at ambient condition. The samples were weighed, immersed in toluene and removed every hour, gently blotted with paper towel, weighed, and immersed in toluene again immediately. Toluene-swelling behaviour was carried out for 8 hr and was conducted in triplicate for each sample. The toluene uptake (SI) was determined from the Equation (1):

\[
SI = \frac{W_f - W_i}{W_i} \times 100\%
\]

Where \(W_i\) and \(W_f\) are masses of the sample before immersion and immersed for a certain period \((t)\), respectively.

RESULTS AND DISCUSSION

Morphology and Dimension of CNC

Figure 1 shows a rod like shape of CNC was obtained via sulphuric acid hydrolysis. The size of CNC was calculated based on the average length and diameter of 100 random CNC particles using Image J software. Table 2 summarises the length, diameter, aspect ratio and the production yield of CNC based on the FESEM images. The value and shape obtained is in agreement with other CNC from different cellulose sources like corn husk (Kampeerapappun, 2015) and sugarcane bagasse (Kumar et al., 2014). However, CNC from EFB as reported by Gray et al. (2018) showed a slightly different result due to higher acid concentration (62%) used in acid hydrolysis process.

Thermal Stability of CNC

Thermal degradation of cellulose materials or the reduction in mechanical properties at elevated temperatures is one of the major issues that limit their applications. The thermal stability of CNC

<table>
<thead>
<tr>
<th>Sample</th>
<th>Length (nm)</th>
<th>Diameter (nm)</th>
<th>Aspect ratio (L/D)</th>
<th>Production yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNC</td>
<td>672 ± 445</td>
<td>103 ± 39</td>
<td>11.4 ± 6.5</td>
<td>86</td>
</tr>
</tbody>
</table>

Figure 1. FESEM image of CNC from empty fruit bunch (EFB) via sulphuric acid hydrolysis at magnification of 15kX and 50kX.

Table 2. Dimension and Production Yield of CNC Isolated from EFB
was determined using TGA and the associated thermograms are shown in Figure 2. The CNC started to degrade at 180°C with maximum decomposition at around 300°C. This degradation temperature was lower compared to the degradation temperature via phosphoric acid hydrolysis and mechanical method where recorded degradation temperatures were at 255°C and 258°C, respectively (Amin et al., 2017). However, isolation of CNC by using sulphuric acid is well-known for giving advantages in terms of stable aqueous colloidal stability despite its poor thermal stability (Mao et al., 2017). In fact, in this work, the maximum processing temperature used was at 100°C (curing temperature), which was under degradation temperature of CNC, thus, it would not disrupt the properties of CNC.

CNC obtained from other various biomass resources were also found to have lower thermal stability than the CNC obtained from EFB. In studies conducted by Neto et al. (2013) and Song et al. (2019), CNC that was extracted from soy hulls and Calotropis procera (fruit) biomass recorded the degradation temperature of 160°C and 170°C, respectively. Hence, the thermal stability of CNC from EFB in this work is verified to be much better than other nanocellulose from other biomass sources.

Fourier-Transform Infrared Spectroscopy (FTIR) Analysis

The FTIR spectra of NRL and CNC/NRL nanocomposites are shown in Figure 3 for both curing temperature of 70°C and 100°C. The absorbance peaks recorded approximately between 3000 cm⁻¹ and 3500 cm⁻¹ are attributed to the stretching vibrations of -OH of CNC. The adsorbed water has also some contribution to the corresponding peak and its intensity is attributed to the hydroxyl group present in each cellulotic unit, similar result was shown by Xu et al. (2013). For both curing temperatures of nanocomposites, the peak intensity was increased with increasing CNC contents, indicating the incorporation of the CNC in NRL.

FTIR spectra of nanocomposites with 70°C and 100°C of curing temperature, the peaks are between 2850 to 2851 cm⁻¹, 1640 to 1662 cm⁻¹ and 2959 cm⁻¹ which are assigned to -CH₃, -C-H and -C-H stretching, respectively, and the peaks that show for -C-H bending is between 1425.96 to 1447.22 cm⁻¹. There are peaks of -OH stretching between 3330.89 to 3394.64 cm⁻¹ and C-O stretching between 1079.55 to 1084.49 cm⁻¹.

These results of CNC/NRL nanocomposites show similar pattern as Abraham et al. (2013) and Jailudin and Amin (2020). In order for cross-linking of the rubber chains to occur, there has to be cleavage on some of the double bonds of the =C-H groups and the appearance of -C-H groups must be observed (Blanchard et al., 2020) and these peak can be seen in Figure 3 (marked in red circle). A slight increase in the peak intensity of -C-H groups after the incorporation of CNC was also observed. In addition, the peak centered at 3380-3390 cm⁻¹ and 1600-1500 cm⁻¹ corresponding to the -OH stretching modes are much sharper and stronger, indicating higher densities of the hydroxyl groups on the surfaces of CNC (Agrebi et al., 2019). Other than that, there was no significant difference of peaks between the two curing temperatures at 70°C and 100°C.

Tensile Properties of CNC/NRL Nanocomposites

The tensile properties of the CNC/NRL nanocomposites, as well as the pure NRL films, were characterised at room temperature. Tensile properties of CNC/NRL nanocomposites at two different curing temperatures are reported in Table 3. Figure 4 shows the stress vs. strain curves for these materials at 70°C and 100°C.

At 70°C of curing temperature, the maximum tensile strength was achieved at 1 wt.% of CNC with 20% of improvement at 7.2 MPa. Meanwhile, the elongation at break and modulus recorded were 14% and 16% of improvement, respectively. Whereas for sample with 100°C of curing temperature, the maximum tensile strength, elongation at break and modulus were also achieved at 1 wt.% of CNC as well. Nevertheless, the value was slightly lower than curing temperature at 70°C.

These significant improvements might be due to the reinforcing effect of CNC and its interaction with NRL on the molecular chain which became a good stress transfer agent that could provide higher strength (Blanchard et al., 2020). According to Thomas et al. (2015), CNC addition formed
TABLE 3. TENSILE PROPERTIES OF NEAT NRL AND CNC/NRL NANOCOMPOSITES

<table>
<thead>
<tr>
<th>Curing temperature</th>
<th>Sample (%)</th>
<th>Tensile strength (MPa)</th>
<th>Elongation at break (%)</th>
<th>Young modulus, E (kPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>70°C</td>
<td>Neat NRL</td>
<td>6.0 ± 0.2</td>
<td>1 225 ± 29</td>
<td>3.1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>7.2 ± 0.2</td>
<td>1 398 ± 50.4</td>
<td>3.6</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2.4 ± 0.4</td>
<td>976 ± 29</td>
<td>3.4</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1.8 ± 0.3</td>
<td>1 025 ± 66</td>
<td>2.7</td>
</tr>
<tr>
<td>100°C</td>
<td>Neat NRL</td>
<td>4.9 ± 0.3</td>
<td>1 206 ± 76</td>
<td>3.4</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>6.9 ± 1.4</td>
<td>1 247 ± 77</td>
<td>3.9</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3.6 ± 0.5</td>
<td>1 059 ± 47</td>
<td>3.6</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>2.0 ± 0.6</td>
<td>1 200 ± 57</td>
<td>3.0</td>
</tr>
</tbody>
</table>

Figure 3. FTIR spectra of CNC and CNC/NRL nanocomposites at curing temperature of (a) 70°C, and (b) 100°C.

Figure 4. Stress-strain curve of CNC/NRL nanocomposites at curing temperature of (a) 70°C, and (b) 100°C.

Notably, for both curing temperatures, at 3% and 5% percolation network within the polymer matrix and the interfacial interaction between matrix and CNC. Thus, the CNC-CNC and NRL-CNC reactions are both responsible to the mechanical enhancement of the resulting nanocomposites.
5% CNC addition decreased the tensile strength by more than 20%. These results might be attributed by the possible restriction of polymer chain mobility in the vicinity of nanocrystal or due to agglomeration and its hydrophilicity characters (Zhang et al., 2014).

Table 4 shows the comparison of mechanical properties of CNC/NRL nanocomposites from different types of cellulose sources. All nanocomposites show significant tensile strength improvement due to addition of additives or surface modification of CNC. However, the elongation at break results displayed significant reduction which sacrificed the ductility of NRL. This might be due to high loading of CNC in NRL matrix. Nonetheless, in this work, tensile strength was improved significantly as well as the elongation at break of the nanocomposite with only 1 wt.% of CNC loading and without any CNC modification or additives.

Thermal Behaviour of CNC/NRL Nanocomposites

The thermal behaviour of CNC/NRL nanocomposite was studied by DSC. Figure 5 displays the DSC curve for samples of NRL and CNC/NRL 1 wt.% nanocomposites at 70°C and 100°C of curing temperatures.

Based on Figure 5, the glass transition temperature (T_g) at 70°C of curing temperature recorded -65.60°C and -64.90°C for neat NRL and 1 wt.% CNC filled nanocomposite, respectively. Melting temperature (T_m) for each film was around -60°C whereas at 100°C curing temperature were at -60.31°C and -59.87°C for neat NRL and 1 wt.% CNC filled NRL, respectively. Bendahou et al. (2010) reported that no significant variation of T_g upon increasing content of CNC. In this study, similar results were also found for both curing temperatures of 70°C and 100°C displayed a T_g around -60°C. Hence, the results are in agreement with previous observations on CNC-filled nanocomposites where no modification on T_g values was reported when increasing the CNC content regardless of the nature of the polymeric matrix (Angles and Dufresne, 2001). This also may indicate that CNC acted as reinforcing filler with only physical interaction/bonding with NRL and in agreement with the result from FTIR which also showed no change in terms of chemical bond after the addition of CNC in the NRL.

The value of T_g will also affect the usage of the composite material, where polymers that have T_g value below than 25°C will result in a soft, flexible polymer at ambient temperature. This statement is verified in this study where NRL and its nanocomposite recorded T_g around -60°C resulted in a rubbery-like texture which can be considered as soft and flexible polymer. Thus, in this study the CNC was not disrupting the molecular structure of the NRL and was able to retain the rubbery properties and improved the ductility of NRL.

Swelling Behaviour of NRL Nanocomposites

The toluene-swelling behaviour of neat NRL and CNC/NRL nanocomposite was also studied to observe the interaction of toluene with the rubber nanocomposite films, and the results are shown in Figure 6.

From the results, the toluene uptake at equilibrium state for both nanocomposites decreased gradually with increasing CNC content and this could be attributed by the higher interfacial interaction between CNC and NRL matrix (Colom et al., 2018) or possibility by the increase in crosslinking density (Blanchard et al., 2020) which can be seen in FTIR result. This is in agreement with the results that recorded the best tensile strength was at 1 wt.% of CNC. Meanwhile, CNC addition at 3 and 5 wt.% reduced the swelling index and might be due to the increase of crosslink density of rubber which is not necessarily good. When heavily crosslinked, the rubber chain mobility becomes highly restricted and the chains are unable to dissipate heat generated by deformation through molecular motion, resulting in easy and brittle rapture at low elongation (Mok and Eng, 2018).

However, it cannot distinguish between the effect of chemical crosslinks or other factors such as entanglement as no significant changes can be seen from DSC result (Flink et al., 1988). It might also be that the swelling test affected by the area occupied by CNC molecules which is hydrophilic as well as strong matrix-filler interactions that can hinder

<table>
<thead>
<tr>
<th>Sources of cellulose</th>
<th>Nanocellulose loading</th>
<th>Mechanical properties of nanocomposites</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potato starch</td>
<td>20 wt.%</td>
<td>300 Improvement of tensile strength (%)</td>
<td>Rajisha et al. (2014)</td>
</tr>
<tr>
<td>Peanut shell</td>
<td>3 wt.%</td>
<td>30 Reduction of elongation at break (%)</td>
<td>Chandra et al. (2020)</td>
</tr>
<tr>
<td>Wood</td>
<td>5 phr</td>
<td>200</td>
<td>Blanchard et al. (2020)</td>
</tr>
<tr>
<td>EFB</td>
<td>1 wt.%</td>
<td>Improved 14%</td>
<td>This work</td>
</tr>
</tbody>
</table>
solvent permeation in the rubber matrix, reducing the volume of the solvent absorbed (Cao et al., 2018).

Meanwhile, as comparison for both curing temperatures of 70°C and 100°C, it showed similar swelling behaviour: toluene uptake increased in the first 4 hr and then increased slowly until reaching the equilibrium state in day one and remained constant. However, for sample with 1 wt.% of CNC, it reached the equilibrium state after day 4 for both curing temperatures.

CONCLUSION

CNC in needle-like shape with an average length of 672 ± 445 nm and diameter of 103 ± 39 nm were successfully extracted from EFB cellulose via sulphuric acid hydrolysis. The best tensile strength was achieved at 1 wt.% of CNC loading in NRL with 20% of improvement at 70°C of curing temperature. Thermal behaviour of CNC/NRL nanocomposites also did not show any significant changes indicating no chemical bonding can be identified. The toluene-swelling behaviour of neat NRL and CNC/NRL nanocomposites for both curing temperatures at 70°C and 100°C showed similar swelling behaviour: toluene uptake went up rapidly in the first 4 hr and then increased slowly until reaching equilibrium state in one day. The swelling intake was reduced upon the CNC addition.

ACKNOWLEDGEMENT

The authors gratefully acknowledge the financial support by Ministry of Higher Education under Fundamental Research Grant Scheme (RDU1901120) / (FRGS/1/2019/TK05/UMP/02/3).
REFERENCES

