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ABSTRACT
The advancement of systems biology research has emphasised the capabilities of statistical analysis tools in 
distinguishing many factors associated with oil palm including genetic vs. environment (GxE) components 
from omics data. The availability of an efficient and robust ecometabolomics workflow has a high potential in 
augmenting oil palm precision agriculture. In this study, we employed cross-validation (CV) and receiver 
operating characteristic (ROC) methodologies to evaluate the performance of an oil palm metabolome dataset 
linked to GxE factors for its predictive ability and integrity. The specificity and sensitivity of identified 
metabolite candidates contributing to the demarcation of the two oil palm groups in the dataset were found to 
be distinctive and were of discrimination quality. The dataset showed no overfitting and exhibited excellent 
predictive power. This work provides fundamental information and a guideline for universal metabolome 
data exploration toward oil palm phenotyping and precision agriculture.
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INTRODUCTION

The high throughput and big data domain of 
systems biology provide attractive omics data 
collection for data mining and further utilisation in 
precision agriculture (Li and Yan, 2020). Defined as 
a holistic, eco-efficient and innovative tool to assist 
crop management  sustainably, precision agriculture 
is viewed as a solution for the increasing human 
population and managing the implications of 
climate change (Lee et al., 2021). One of the key areas 
in the omics studies is metabolomics; the in-depth 

analysis of a set of metabolites within an organism, 
cell or tissue under a given set of conditions at a 
specific time (Goodacre et al., 2004; Reinke and 
Broadhurst, 2012). It is regarded as an important crop 
phenotyping tool that revolutionises the traditional 
assessment of phenotype by observing and 
measuring an organism’s physical characteristics 
(Razzaq et al., 2019). Crop phenotyping facilitates the 
selection efficiency of breeding programs, expedites 
genetic gains and helps automate or mechanise the 
monitoring of crop vigour status (Chawade et al., 
2019). 

In plants, especially oil palm, the use of 
metabolomics is aimed at shedding light on several 
significant biological traits and responses to biotic 
and abiotic stimuli in numerous environmental 
conditions affecting plants’ phenotypic performance, 
e.g., yield, oil quality and disease resistance. Various 
metabolomics investigations involving oil palm 
leaf (Rozali et al., 2021; Tahir et al., 2016; Vargas et 
al., 2016), root (Muhammad et al., 2021; Nurazah 
et al., 2021), seedling (Dzulkafli et al., 2019) and 

SHORT COMMUNICATION



377

CROSS-VALIDATION AND RECEIVER OPERATING CHARACTERISTIC ANALYSES FOR OIL PALM LEAF METABOLOME DATASET

mesocarp (Teh et al., 2013) were performed using 
various analytical approaches to elucidate the 
crop’s biochemical characteristics. Among the 
metabolomics platforms, liquid chromatography 
paired with mass spectrometry (LC-MS) is 
recognised as the most frequently utilised in 
metabolomics (Sindelar and Patti, 2020; Xiao et al., 
2012) especially plant ecometabolomics strategy and 
can cover the separation and detection of diverse and 
inclusive plant metabolites (Sardans et al., 2020). To 
systematically analyse and interpret a metabolomics 
dataset, chemometrics is employed (Ishak et al., 
2021). Chemometrics is an arm of data science for 
the extraction and evaluation of analytical-chemical 
data. Within the context of precision agriculture, the 
machine learning of chemometrics data collected 
in the field will allow automated extraction of 
information and further provide a model for 

characteristic prediction as outlined in Figure 1. 
Statistical techniques and machine learning have 
only lately gained popularity in oil palm research, 
for example, in remote sensing (Jia et al., 2019), 
palm oil and fruit quality (Goggin et al., 2021; Goh 
et al., 2021). Here, the application of cross-validation 
(CV) and receiver operating characteristic (ROC) 
approaches to an oil palm metabolome dataset were 
evaluated and verified for the first time as figures of 
merit in the endeavour to develop a screening and 
predictive workflow for metabolomics-assisted crop 
phenotyping.

MATERIALS AND METHODS

The raw data from LC-MS of the oil palm spear 
leaf metabolome from an ecometabolomics study 

Figure 1. The general data-driven workflow for precision agriculture.
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is similar to the settings demonstrated by Tahir et 
al. (2016) and guided by mass-spectrometry-based 
metabolomics recommendations (Alseekh et al., 
2021) was organised into a tabular dataset format 
with rows of retention times against columns of 
peak intensities from 1.0-59.5 min analysis time with 
‘binned’ components containing peak intensities 
from mass-to-charge ratio (m/z) of 50-1000. A signal-
to-noise (S/N) threshold of 5.0 was applied in which 
a signal must surpass the set value to be used in 
the peak detection. The metabolome was extracted 
from oil palm leaves consisting of top, middle and 
basal leaflets on a selected frond ‘0’ (spear leaf) 
from one specific clonal oil palm line, sampled from 
two different planting sites of mineral and peat
 soil types.

Oil Palm Metabolomics Workflow

The general plant metabolomics workflow 
from oil palm tissue sampling for chemometrics is 
described in Figure 2, involving sample collection, 
storage and extraction before the analysis using 
analytical platforms to detect and measure the 
small molecules. Consideration for photo-, heat-, 
and temporal-sensitive specimens must be taken 
into account to avoid deterioration and to minimise 
metabolome variations. The inspection of the 
generated data for inconsistencies and missing 
values is crucial in data interpretation as it will 
affect subsequent statistical analysis, and poor 
data processing may result in or further aggravate 
unwanted variance (Engel et al., 2013). Uni- and 
multivariate analysis reduce the dimensions of the 
data and provide visualisation for interpretation. For 
definitive performance assessment of the statistical 
classification, the metabolome dataset is further 
validated for machine learning using CV and ROC   
approaches.

LC-MS Dataset Validation

CV of the dataset (n=42) was performed according 
to leave-p-out analyses parameters of leave-one-out, 

leave-5%-out and leave-10%-out CV. ROC and the 
confidence intervals for metabolite classifiers were 
calculated in MetaboAnalyst 5.0 (Pang et al., 2021) 
according to group assigned parameter of soil 
where the x-axis was referred to as the ‘1-specificity’ 
in terms of the recorded false positives and the 
y-axis was referred to the sensitivity in terms of the 
recorded true positives. Both axes were given values 
between 0 and 1. A test assumption was made that 
the first attribute is the mineral soil and the second 
attribute is the peat soil. Analyses and parameters 
were set up in ProfileAnalysis 2.1 (Bruker Daltonics, 
Bremen, Germany). Supervised statistical analysis 
of an orthogonal partial least square-discriminant 
analysis (OPLS-DA) predictive model with Pareto 
scaling and ROC model classification accuracy was 
performed using SIMCA-P+ 14.1 software (Sartorius 
Stedim Data Analytics AB, Umeå/Malmö, Sweden).

RESULTS AND DISCUSSION

Cross-validation (CV) of Oil Palm Leaf Metabolome 
Dataset 

The CV method keeps a portion of analyses 
out of the model calculation and calculates  several 
parallel models from the reduced data before it 
forecasts the removed data by the different models 
and compares the predicted values with the actual 
ones (Schmidt et al., 2019). A model is constructed 
and optimised using the training data while the test 
set is applied to see how well the model works. The 
procedure will be repeated in such a way that each 
sample appears once and only once in the test set, 
and the prediction error is representative of new 
samples. A completely independent test set must not 
be pretreated, preprocessed, or scaled. 

The most common types of CV are leave-one-out 
and k-fold (Xi et al., 2014). Considering a case where 
the sample size is n, in leave-one-out CV, n-1 samples 
are used as a training set for fitting a classification 
model, and the remaining sample is used for testing. 
This process is repeated n times, and each sample 

Figure 2. Oil palm metabolomics workflow.

e.g.,
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is implemented just once as test data. A model 
constructed from n-1 samples is approximately 
as accurate as one constructed from all n samples. 
The proportion of misclassified test data points 
is used to calculate the classification error rate. In 
k-fold CV, the entire dataset is partitioned into k 
subsets of similar size (e.g., k=5 or k=10). k-1 subsets 
are combined and used as a training set for each 
iteration, while the remaining subset is used as a 
test set. Every sample serves as a test data point only 
once. Figure 3a shows the influence plot of the oil 
palm leaf metabolome dataset before the application 
of any validation method while Figures 3b, 3c and 3d 
are the influence plots after the leave-one-out, leave-
5%-out and leave-10%-out CV respectively.  All data 
points were located in the distance 1 (D1) quadrant 
corresponding to analyses inside the model 
space after the CV, indicating a good proportion 
of the model.
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Figure 4. Types of ROC curves for classifier accuracy.

Figure 3. Influence plots of oil palm leaf metabolome dataset; (a) before cross-validation, (b) leave-one-out cross-validation, (c) leave-5%-out cross-
validation and (d) leave-10%-out cross-validation (Dm - ‘Distance to model’ and Dc - ‘Distance to centre’).
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Receiver Operating Characteristic (ROC) Curve 
for Discrimination Threshold

The ROC curve is an evaluation of the distinctive 
quality of a classifier (i.e., metabolites or soil type) 
where the best possible prediction feature yields a 
curve in the direction of the upper left corner of the 
plot towards 100% sensitivity and 100% specificity. 
Figure 4 summarises the main verdicts that can be 
drawn from a ROC curve.

In Figure 5, the accuracy of dopamine (C8H11NO2, 
m/z 152.0719 [M-H]-) and asparagine (C4H8N2O3, 
m/z 131.0434 [M-H]-) in discriminating the two 
planting locations were demonstrated by the ROC 
curves which were plotted closer to the left and 
the top border of the ROC space,  consistent with 
previous findings (Tahir et al., 2016). The jagged 
shape of the ROC curves could be improved by 
adding more measurements to get smoother arcs 
(Xia et al., 2013). According to Bünger and Mallet 
(2016) and Ferraris (2019), any classifier designated 
as a test criterion displaying a high area under the 
ROC curve (AUC) value of close to 1.0 indicates 
high diagnostic capability in discriminating two 
populations. As dopamine and asparagine showed 
high AUC values of 0.852 (0.725-0.955 confidence 
interval) and 0.781 (0.634-0.911 confidence interval) 
respectively, these metabolites are excellent 
classifiers for the different groups of oil palm 
specimens.

Assessment of Predictive Model from Oil Palm 
Leaf Metabolome Dataset

An orthogonal partial least square-discriminant 
analysis (OPLS-DA) model was constructed using 

the dataset based on its suitability in separating 
predictive from non-predictive (orthogonal) 
variation (Bylesjö et al., 2006). Ranging from 0-1, 
a low value of 0.1822 root-mean-square CV error 
(RMSECV) was obtained for the model indicating 
a reliable and predictive ability (Lee et al., 2018; 
Liu et al., 2020). The statistical model from the 
training set was found to be significantly robust 
with a total accuracy of 100% correct classification 
and a low Fisher value (p<0.01) as tabulated in 
Table 1 (Tarapoulouzi et al., 2020). An external 
validation using three unknown samples from 
different planting trials as a test set (n=3) which 
were subjected to similar metabolome extraction, 
data acquisition and the preprocessing protocol 
was able to prove that the model can successfully 
predict the planting soil type of the unknown oil 
palm samples from three different mineral soil 
trials. The misclassification table (Table 1) of the 
constructed model indicated that the blind samples 
were grouped with the mineral group samples.

TABLE 1. OPLS-DA MODEL MISCLASSIFICATION TABLE 
OF OIL PALM METABOLOME SPECIMENS FROM 

DIFFERENT PLANTING TRIALS

No. of 
specimen

Correct 
classification 

(%)
Mineral Peat

Mineral 21 100 21 0

Peat 21 100 0 21

Unknown 
specimen 3 3 0

Total specimen 45 100 24 21

Fisher’s 
probability 1.9 x10-12

Figure 5. ROC curves with AUC values for (a) dopamine with an AUC value of 0.852 and (b) asparagine with an AUC value of 0.781.
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Figure 6 presents the predicted score scatter plot 
of the test set merged with the training set samples 
from the mineral and peat soils. From the test set, 
two unknown samples (SampleX1 and SampleX2) 
were plotted on the left-hand side of the plot together 
with the mineral soil cluster while one unknown 
sample (SampleX3) was found in the outer region 
of the 95% mineral soil confidence ellipse. The three 
unknown samples are classified as specimens of 
mineral soil type, with SampleX3 exhibiting slight 
variation from the others.

An additional ROC analysis performed to 
assess the predictive OPLS-DA model’s ability to 
appropriately categorise the oil palm specimens 
resulted in an AUC value of 1.0 (Figure 7), indicating 
its excellent classification power in separating 
the oil palm leaf metabolome samples to their 
corresponding planting soils (Ruisánchez et al., 
2021).

CONCLUSION

This work demonstrated the validation and 
evaluation methods of CV and ROC on an oil 
palm metabolome dataset in an attempt to 
obtain a screening and predictive workflow for 
metabolomics-assisted crop phenotyping. The 
demarcation of oil palm leaf samples from the peat 
and mineral soil planting sites by dopamine and 
asparagine respectively was verified as statistically 
significant for discriminating and predicting the two 
classes/groups of samples. The predictive statistical 
model constructed from the chemometric analysis 
also demonstrated excellent predictive ability. These 
findings established the provision of metabolome 
data exploration for oil palm phenotyping and its 
potential utilisation for machine learning which is 
highly prospective for oil palm integrated precision 
agriculture.

Figure 7. ROC curves for the classification accuracy of the OPLS-DA model with the area under curve (AUC) values of 
1.0 for (a) peat soil and (b) mineral soil planting trials.

Figure 6. Predicted score plot with training set merged with the test set for oil palm spear leaf samples from different planting sites.
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