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INTRODUCTION

The development of Deep Learning (DL) makes 
functions such as image classification, object 
detection, image tracking, and image manipulation 
more accessible and accurate (Prasetyo et al., 
2020). The DL system has a layered architecture 
which could be organised as a convolutional and 
fully connected layer. The convolutional layer 
is for extracting automatic features based on the 
properties of the windowing filter applied in a 
particular area of the image. The fully connected 
layer collects the critical component of the object 
with an activation function to ensure that the feature 
belongs to the category. The activation function 

is a mathematical function that can activate the 
next layer based on previous criteria with various 
weights to be considered as a category based on the 
feature that belongs to that category.

DL has been applied in many applications, 
including agriculture. Palm oil is one strategic 
commodity in Indonesian agriculture known as 
crude palm oil (CPO) that is being exported to many 
countries because of the need for cooking oil and 
other industrial application. Oil palm ripeness as 
the CPO source must be detected on the right time 
sequence. A farmer harvests based on experience, 
and sometimes the decision is wrong because of 
unfocussed observation. The farmer could be assist 
by a computer vision system to select for ripe fresh 
fruit bunches (FFB) is ripe based on the grade 
classification (Suharjito et al., 2021).

There are two categories of research: Detecting 
the ripeness of oil palm FFB from a close range and 
detecting the ripeness and classifying the trees from 
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remote sensing images. Image classification can be 
achieved through the use of traditional machine 
learning methods, as well as through the application 
of deep learning techniques. Traditional machine 
learning combines image processing techniques to 
obtain unique features from statistical Red, Green, 
Blue (RGB) distribution in images of oil palm 
FFB, while deep learning extracts specific features 
through filter combinations.

In general, mature FFB is transformed from 
black to red but not completely red, so it needs to 
be considered the most significant region of interest 
(ROI) with red color (Alfatni et al., 2020). The image 
processing technique combines machine learning 
to properly get the ROI’s feature distribution. An 
artificial neural network (ANN) and support vector 
machine (SVM) algorithms classify the oil palm 
ripeness category. The SVM algorithm is used in the 
grain, not the whole oil palm fruit image.

Regarding DL, there is a variation in 
convolutional neural network (CNN) usage 
from simple to complicated. Simple CNN uses  
EfficientNet B0 with an accuracy of 89.3% (Suharjito 
et al., 2021). There is a need for simple CNN because 
it will be implemented in the embedded device. 
Based on the architecture of EfficientNet, it would be 
developed with extra scaling fusion parametrisation 
in the term of EfficientDet in this research. Mounting 
the filter with unequal dimensions in EfficientDet 
could give another insight base on the oil palm’s 
ripeness characteristic. There is a surrounding edge 
to each bunch and a color transition to determine 
which part is ripe.

Several kinds of research on the maturity level 
of oil palm FFB use different classification and DL 
models and additional techniques to help obtain 
more specific characteristics of the oil palm bunch. 
Machine learning needs several feature engineering. 
Feature engineering that needs to be tinkered with 
is wavelength input and RGB decomposition, 
preprocessing using the principal component 
analysis (PCA) method, and the artificial neural 
network (ANN) hyperparameter tuning.

The ANN approach is explained in research for 
near-bunch images and remote sensing. ANN uses 
a different approach to CNN architecture. Transfer 
learning is used from the typical architecture like 
AlexNet, which outperforms machine learning 
with SVM and extra preprocessing like Histogram 
of Oriented Gradient (HOG) (Ibrahim et al., 2018). 
Table 1 shows the comparison of methods and 
improvement suggestions of each research done in 
oil palm detection based on image processing and 
artificial neural network.

This research was not using regional 
segmentation because the complexity of the 
segmentation could affect the performance of the 
DL model applied to the Android device. There is 
also a need for more examples to represent the state 

of the oil palms (Prasetyo et al., 2020). Although this 
research primarily focuses on the dataset derived 
from the plantations in Sumatra, it should be noted 
that the dataset from Kalimantan was relatively 
limited in size and scope. We incorporated data from 
both regions to understand plantation conditions 
across different areas better.

An extension for CNN is R-CNN, a combination 
of region proposals. There is extra insight from 
complex sight, overlapping objects, and diverse 
backgrounds, which could exclude the intersection 
of an object with another object, so the region of 
interest becomes clearer. Faster R-CNN consists 
of regional proposal network (RPN) and detector 
modules. RPN is a small network neuron in the last 
row of convolutional layers and is used to predict 
the existence of the required object and bounding 
box.

This research also aimed to build observation 
tools to validate the model directly on the plantation 
area, given the variation in tree height, ranging 
from approximately 2-20 m. Before utilising the 
observation tools in this research, farmers would 
employ elevated stationary platforms or tall 
observation towers to observe the upper sections of 
trees where the fruit bunches are located at heights 
of 10 m or higher. In this case, following the tools 
from this research, farmers and researchers could 
practically approach the task by utilising their 
smartphones’ cameras along with a long stick. 
Farmers and researchers could extend their reach 
by attaching their phones to the stick and capturing 
images or videos of the FFB located at heights of  
10 m or higher. This method allowed them to observe 
and monitor the FFB without needing elevated 
stationary platforms or tall observation towers. 
Subsequently, these captured images were classified 
using deep learning techniques, thereby enhancing 
the accuracy and efficiency of the classification 
process.

Several CNN is used to classify the oil palm 
FFB: LeNet, AlexNet, EfficientNet B0, and Faster 
R-CNN. The reason for choosing EfficientDet-Lite  
as the backbone for classification was that  
EfficientDet is based on the CNN model that  
achieved state-of-the-art performance (Guo et 
al., 2022). A lighter and improved version of 
EfficientDet, called EfficientDet-Lite, does away 
with the squeeze-and-excite module because it 
is not mobile-optimised and replaces the ReLU6  
activation function with a swish activation 
mechanism. This research began with a trial with 
MobileNetV2 and NasNetMobile before using 
the EfficientDet-Lite. The problem was that the 
MobileNetV2 could not do a stable classification 
with cases; sometimes, the object was undetected. 
Another research also showed that EfficientDet-D5 
using a variation of scaling D5 gives better 
accuracy than YOLOv4 (Ammar et al., 2021). 
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TABLE 1. FFB RIPENESS DETECTION COMPARISON

Researcher Method Algorithm Sample size, number 
of classes, accuracy

Insight and improvement 
suggestions

Shiddiq et al. (2016) Image Processing RGB quantisation Not mentioned,  
4 classes not 
mentioned

The comparison should 
also be made using soft 
computing programs

Septiarini et al. (2019) Image Processing 
and Machine 

Learning

Histogram statistical 
spread, otsu method, 

and morphology using 
SVM

160 images, 4 classes, 
about 90.00%

Need development 
of segmentation and 

classification methods to 
reduce error.

Sukemi and Sukrisno (2019) Image Processing Gray Level Co-
occurrence Matrix  

(GLCM)

50 images, 2 classes, 
90.00%

Need lighting for getting 
the 90% accuracy

Prasetyo et al. (2020) ANN Faster R-CNN 100 images, counting 
and giving a bunch’s 
region area, 80.00%

Some things that caused the 
detection of bunches were 
the high level of occlusion, 
and there is the presence of 
several objects that covered 

the bunch

Suharjito et al. (2021) ANN EfficientNetB0 103 images, 4 classes, 
89.3.0%

A tradeoff exists between 
accuracy, classification time, 

and the need for a more 
significant parameter.

Saleh and Liansitim (2020) ANN CNN Accuracy is calculated 
in different research

Need to use datasets 
outside the training because 
the accuracy is high when 
using the training dataset.

Harsawardana et al. (2020) ANN with Smart 
Crane Hardware

CNN using ResNet 400 images,  
7 classes, 71.34%

The accuracy is only 
about 71%, and need for 

optimisation

Ibrahim et al. (2018) ANN Compare Fast Retina 
Keypoint, HOG using 
SVM, and CNN using 

AlexNet

120 images,  
4 classes, 92.00%

A deep layer can lead to 
better results but at a slow 
processing time and need 
a deeper pre-trained CNN 

model.

Ammar et al. (2021) ANN for Geospatial 
Image

YOLOv4 and 
EfficientDet-D5

258 images, not 
detecting oil palm 
ripeness, 99.00%

There is a tradeoff between 
speed and accuracy 

which are YOLOv4 and 
EfficientDetD5 are suitable 
for accuracy, while Faster 

R-CNN and YOLOv3 were 
significantly less accurate.

Khalid and Shahrol (2022) ANN for Geospatial CNN inside ArcGIS 
Pro compared with 

SVM

Not mentioned, not 
detecting oil palm 
ripeness, 91.00%

CNN gets better accuracy 
than SVM, but by using 

built-in CNN, the 
architecture could not be 

described clearly

Wibowo et al. (2022) ANN for Remote 
Sensing

YOLOv3, YOLOv4, 
YOLOv5

Not mentioned, not 
detecting oil palm 
ripeness, 97.00%

There is a certain resolution 
that affects the result, and 

for the model, YOLOv3 
and YOLOv4 are the best 

models

Mubin et al. (2019) ANN CNN using LeNet 260 images, 2 classes of 
remote sensing, 95.11%

There is a need for an 
optimiser like AdaGrad 
because the lowest loss 

value and high accuracy 
could be further improved 
by using high-resolution 

hyperspectral remote-
sensing images.
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Considering all the aspects above, this research 
contributes by optimising the hyperparameters  
and input size of the EfficientDet-Lite model, which 
leads to improved performance in the ripeness 
classification of the Dumpy variety. The findings 
suggest that with appropriate adjustments to  
the hyperparameters and input size, the model 
can achieve favorable results in accurately 
classifying the ripeness of Dumpy variety fruit  
bunches.

MATERIALS AND METHODS

The total dataset of oil palm FFB used as training 
data were 240 images. There were four classes: 
Unripe, underripe, ripe, and overripe, and each 
class consisted of 60 images. The consideration 
of choosing 240 images was because, as in Table 1,  
the usage of the sample images was about 100-200 
images if they consisted of 2-4 classes. There is 
no specific minimum image standardisation that 
could be used in DL. The validation used 15 images 
for each category, totaling 60 images outside the 
training data. A variation of 170 images of unique 
oil palm FFB has been used. EfficientDet supports 
a variety of image preprocessing procedures. By 
default, the supplied image has a 50% probability 
of being horizontally flipped, serving as a simple 
image enhancement method.

There was a consideration that some oil 
palm FFB images were rotated and zoomed in to 
get an additional number of samples for about  
2-5 images from the original 170 images.  
The variety of oil palms captured was all Dumpy 
from Pusat Penelitian Kelapa Sawit (PPKS) or 
Research Centre of Oil Palm. Dumpy is a variety 
of oil palm with the advantage of a slow growth 
rate, allowing it to grow for an economic lifespan 
of 30 years or longer compared to other types. The 
Dumpy variety of oil palm, also known as DyP 
Sungai Pancur I (SP-I), can be found in various 
locations, including Kebun Rayon B, PT Raya 
Padang Langkat, Ds. Bukit Mas II, Kec Besitang, 
Kab. Langkat, North Sumatra, Indonesia. The 
site of the plantation can be accessed through 
the following Google Maps link: https://maps.
app.goo.gl/omzqUWJusKfNCnTs7. The Dumpy 
variety picture was also taken from several private 
plantations in Kalimantan. The distance between 
the camera and the oil palm FFB was about 3-5 m. 
The smartphone used to take the picture was the  
Samsung Galaxy J7 with specifications 13 MP, f/1.9, 
28 mm (wide). A variation of the camera has been 
used: An X85 HD 720P Webcam with 5 MP high 
definition with a resolution of 1920 × 1080.

The researcher collected images of the oil 
palm FFB using a smartphone camera and varied 
the shooting angles and backgrounds to create 

different datasets. With the guidance of experts 
from Perhutani, predetermined classes were 
determined, and the data collection was supervised 
on the plantation. A strong foundation was laid for 
the oil palm FFB ripeness detection research by 
working directly with the experts and gathering 
a comprehensive data set. The criteria used to 
determine the class was based on the experience 
of the expert. The main reason for taking an 
image with supervision was to ensure that the 
photo’s angle could describe the proper criteria for 
classification.

The second stage was image preprocessing 
based on the specification in Table 2. EfficientDet 
needs a specific resolution for the input, so the 
input images were considered using EfficientDet 
D2 because the backbone layer structure is the 
same as EfficientDet-Lite2. The image was resized 
to 768 × 768 from the original resolution of about 
1080 × 1920.

The third stage was labeling and annotating 
each dataset image. Labeling is crucial in 
EfficientDet object detection by providing ground 
truth annotations as the reference standard for 
training the model. The assigned bounding boxes 
and class labels during the labeling process are 
used to instruct the model on identifying and 
locating objects of different classes within an  
image, considering the diverse backgrounds 
and conditions in the dataset shown in Figure 1. 
These annotations are instrumental in teaching 
the model the visual characteristics of various 
objects, enhancing its ability to generalise and make 
accurate predictions on unseen patterns. Four 
different environments and scenarios were used to 
collect oil palm images. There were 27 photos of 
palm bunches hanging from the tree, 183 photos 
on the ground, 11 photos capturing scenes with 
hanging FFB, and 19 photos of groups with grass 
in the background. The labeling and annotation 
process results are saved in an XML file containing 
information about the labeling box coordinate and  
width.

The fourth stage was conducting data training 
on images that had been labeled and annotated. 
The training process was performed using the 
Google Collaboratory application. EfficientDet-
Lite2 was chosen among other models because 
the mean Average Precision (mAP) score is above 
average compared with EfficientDet-Lite0 until 
EfficientDet-Lite4 (Repák, 2021). This model 
was implemented as the detection and counting 
program on the Android device.

EfficientNet, as the base of EfficientDet, 
introduced a brand-new compound scaling 
technique that uniformly scales the network’s 
depth, width, and resolution. A new baseline 
network was created with a neural architecture 
search. The EfficientNet scaling method evenly 
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Figure 1. Background and camera angle variation of the oil palm FFB dataset.

scales network breadth, depth, and resolution 
using a set of preset scaling coefficients, in contrast 
to standard practice, which scales these variables 
arbitrarily.

Compound scaling uses a compound coefficient 
Φ to uniformly scale a network according to 
guiding principles. The parameters denote the user-
specified coefficient in Equation (1) and parameters 
α, β, and γ define how to apply this to the network 
depth, width, and resolution.

Depth: d = αφ Width: w = βφ

Resolution: r = γφ

(1)
f = α . β2 . γ2 ≈ 2

α ≥ 1, β ≥ 1, γ ≥ 1

Compound scaling aims to increase the 
network’s length (Li), width (Ci), and resolution 
(Hi, Wi) while maintaining the baseline  
network’s preset Fi. Although the design space 
is supposed to be reduced by fixing Fi, since  
Li, Ci, Hi, and Wi can still be explored for 
each layer, the design space is still quite wide. 
Every layer must be scaled consistently with 
a constant ratio to constrict the design space 
further. Compounding scaling, described as an 
optimisation problem, aims to maximise the 
model’s accuracy given the resource constraints in  
Equation (2).

Accuracy [N(d,w,r)]max
d,w,r

s.t. N(d,w,r) =  

Memory (N) ≤ Target_memory

FLOPS (N) ≤ Target_flops

(2)

Where N is Convnet, w, d, and r are coefficients 
for scaling the network width, depth, and 
resolution. A sign  is a list of a layer.

A bidirectional Feature Pyramid Network 
(BiFPN) improves cross-scale connections by 
deleting nodes with only one input edge. BiFPN 
adds an advantage from the original input to 
the output node based on some level conditions 
and treats each bidirectional path as a single 
feature network layer. Different input features 
have varied resolutions and typically contribute 
unequally to the output feature. Additional weight 
is applied to each input, allowing the network 
to learn the relative relevance of each input  
attribute. 

BiFPN has five modifications over a normal  
FPN. Instead of only the top-down feature, it 
adds another bottom-up feature fusion branch, 
shown with the red arrow in Figure 2. It has to 
skip connections from the initial feature map to 
the fused feature map, so there is a repeated block  
with a purple arrow. Nodes with only one input 
are removed because they do not do much fusion 
as other nodes. The entire module is repeated 
multiple times. For different resolution feature  
maps to contribute to the fusion at various 
capacities, features are not added directly but 
instead using a weighted average. There is a 
normalization of backpropagation because 
unbounded weights cause issues. Although it 
worked, applying softmax to the weight values 
slowed down training. A simple average following 
Relu activation is utilised to normalise the  
weights.

The BiFPN, as an additional module in the 
network, which may also be scaled, necessitates 
the development of a new scaling technique. The 
width of BiFPN increases exponentially while 
the input resolution and depth of BiFPN increase  
linearly.

This section shows the top-down convolution 
in the 6th layer of BiFPN. The illustration of feature 
fusion at level 6 is shown in Figure 2. A top-down 
fusion P6

td has to be computed as in Equation (3).  
A bottom-up feature fusion is calculated to  
produce the output from the current level shown in 
Equation (4). There is a resizing mechanism from  
P7

in The layer shows a connection for the  
convolution from top-down and bottom-up as 
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in

in td out

out

Repeated blocks

P7
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P5

P4

P3

Proposed BiFPN

P7

P6

P5

P4

P3

Standard bi directional FPN

P7

P6

P5

P4

P3

Standard FPN

Figure 2. Weighted Bi-directional Feature Pyramid Network (FPN)

the location of the bounding box. The bounding 
box is the box with the coordinate of the object. 
An XML file describes the bounding box location 
while the model was fed to EfficientDet. As a result 
of the classification, a bounding box was used to 
determine the exact object location. A complete 
table of comparison is shown in Table 2.

TABLE 2. EFFICIENTDET INPUT, BIFPN, AND CLASSNET 
LAYER

Model Input 
layer

BiFPN 
layers

ClassNet 
and BoxNet 

layers

D0 (∅ = 0) 512 3 3

D1 (∅ = 1) 640 4 3

D2 (∅ = 2) 768 5 3

D3 (∅ = 3) 896 6 4

D4 (∅ = 4) 1024 7 4

D5 (∅ = 5) 1280 7 4

D6 (∅ = 6) 1280 8 5

D7 (∅ = 7) 1536 8 5

Lite0 320 3 3

Lite1 384 4 3

Lite2 448 5 3

Lite3 512 6 4

Lite4 640 7 4

This research proposes EfficientDet-Lite2  
based on the trial and error mechanism. The 
consideration for choosing EfficientDet-Lite2 is 
the size, latency, and mAP. Size describes the 
quantised integer model after optimisation. Integer 
quantisation is an optimisation technique that 
converts both model’s weights and activation 
outputs from 32-bit floating-point numbers to the 

the backbone of FPN. Equation (4) shows the P6
out 

that affected the convolutional in Equation (2) and 
connected with P5

out so it is connected bi-directional.

P6
td = Conv 

w1 . P6
in + w2 . Resize (P7

in)
w1 + w2 + ϵ (3)

P6
out = Conv w1' . P6

in + w2'. P6
td + w3' . Resize (P5

out)
w1' + w2' + w3' + ϵ (4)

In general, Pi represents an output from the 
backbone’s i-th layer and is an input to the i-th 
Bi-FPN level. w1', w2', w3', are the weighted feature 
fusion. ϵ is a small constant (configurable as part of 
the constructor arguments).

Top-down and bottom-up fusion are explained 
in Figure 3. The left side in Figure 3 is the bottom-
up approach, which down-sampled the resolution 
by a factor of 0.5. The middle part is the top-down 
approach, starting with a coarser-resolution feature 
map and upsampling by 2. The upsampled map is 
merged with the corresponding bottom-up map, 
which walks on a 1 × 1 convolutional layer to reduce 
channel dimension. This process is iterated until the 
finest resolution map is generated.

Inspired by the merge scaling used in 
EfficientNets, a new combined scaling method 
is proposed for object detection. This method 
uses coefficients (Φ) to improve the fusion of 
all dimensions of the backbone network, BiFPN 
network, class network, and resolution. This 
research proposes an EfficientDet-Lite2 model 
using a D2 input size of 768 × 768 in input layer 
resolution. EfficientDet D2 and EfficientDet-Lite2 
use five BiFPN layers to fuse the upsampling 
and downsampling features. Three ClassNet and 
BoxNet are used to predict categories and draw 
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nearest 8-bit fixed-point numbers. Latency was 
measured on Google Pixel 4 Smartphone using 
four threads on the CPU. Average Precision is 
the mAP on the COCO 2017 validation dataset. 
EfficientDet-Lite3 mAP is higher but not very 
significant. The usage of EfficientDet-Lite2 
is also a consideration that the model would 
be implemented on the Android device. The 
comparison of size, latency, and mAP levels is  
shown in Table 3.

TABLE 3. EFFICIENTDET-LITE SIZE, LATENCY, AND MAP 
COMPARISON

Model Size
(MB)

Latency
(ms) mAP

EfficientDet-Lite0 4.4 37 25.69%

EfficientDet-Lite1 5.8 49 30.55%

EfficientDet-Lite2 7.2 69 33.97%

EfficientDet-Lite3 11.4 116 37.70%

EfficientDet-Lite4 19.9 260 41.96%

Test on the system’s performance was based 
on the data outside the dataset, batch and epoch 
variations, and independence accuracy testing. Data 
training with batch and epoch variations is divided 
into two: Original and preprocessing data training 
with batch variations: 8 and 16 and epochs: 20, 
50, 100, 200, 300, 400, and 500. The results of data 
training with batch and epoch variations can be seen 
in Table 4.

RESULTS AND DISCUSSION

Batch size is the sample of images that propagate 
through the network. A larger batch size would 
make less backpropagation, so for the 240 samples, 
there was 15 backpropagation in batch 16 and  
30 backpropagation in batch 8. The pattern was 
that in 300 epochs, each batch gained the top mAP 
percentage, and then the mAP decreased. There 
was no significant difference between batch 8 and 
batch 16 according to the duration of the training 
and the mAP score, but the mAP score was higher 
in batch 16.

Detection quality means recognising oil palm 
FFB objects and performing classification. The 
confidence level of the detection must be above 
50%. The confidence score reflects how likely 
the box contains an object of interest and how 
confident the classifier is about it. If no object exists 
in that box, the confidence score should ideally be 
zero. Generally, the confidence score tends to be 
higher for tighter bounding boxes in the case of 
object detection. The TensorFlow model validation 
testing only shows one category with the highest 
confidence. A confidence level below 50% often 
shows incorrect results, so the threshold is set to 
50%.

The test results were entered into a table 
called the confusion matrix or error matrix, which 
was used to deliver information on comparing 
the classification results. The confusion matrix is 

Figure 3. FPN bottom-up and top-down convolutional mechanism.
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shown in Table 5. The performance parameter of 
classification is shown in Table 6.

Testing is done on the 60 images beside the 
dataset captured directly in the plantation in 
variation with images provided on the internet. 
While color features in pictures on the internet 
can still offer some reliability, they may not be as 
accurate as images taken directly from the fruit 
on the plantation due to possible variations in 

lighting and other factors. Still, the aim is to test 
the possibility of the interpretation and how 
general the model could classify. The classification 
performance was not much higher than the 
accuracy in the previous literature finding, which 
is above 90% or more.

The testing scenario used images outside 
the training process and a direct capture at the 
plantation, as in Figure 2. For example, in Figure 2, 

TABLE 4. EFFICIENTDET-LITE2 BATCH TRAINING 8 AND 16

No EfficientDet-Lite Version
(Batch training 8) Epoch Duration 

(hh:mm:ss) mAP (%)

1 2 20 00:06:20 58,00366

2 2 50 00:12:42 55,70173

3 2 100 00:23:59 55,09633

4 2 200 00:47:49 56,46802

5 2 300 01:10:00 57,66782

6 2 400 01:22:21 53,56957

7 2 500 02:12:50 52,73226

No EfficientDet-Lite Version
(Batch traning 16) Epoch Duration 

(hh:mm:ss) mAP (%)

1 2 20 00:07:08 55,47828

2 2 50 00:13:32 58,89936

3 2 100 00:26:18 57,62151

4 2 200 00:53:33 58,88936

5 2 300 01:20:00 59,80644

6 2 400 01:30:00 57,99332

7 2 500 02:16:34 55,68957

TABLE 5. CONFUSION MATRIX OF EFFICIENTDET-LITE2

Category
Prediction

Total
Overripe Ripe Underripe Unripe

A
ct

ua
l

Overripe 21 4 0 0 25

Ripe 1 22 2 0 25

Underripe 0 3 17 4 25

Unripe 0 0 1 24 25

Total 22 29 20 28 100

TABLE 6. CLASSIFICATION PERFORMANCE

No CNN Model Device Accuracy
(%)

Precision
(%)

Recall
(%) F1-Score

1 EfficientDet-Lite2 (Proposed) Android 84.00 82.00 85.00 84.00

2 LeNet (Mubin et al., 2019) PC 95.11

3 EfficientDet-D5 and YOLOv4 (Ammar et al., 2021) PC 99.00

4 AlexNet (Ibrahim et al., 2018) PC 92.00

5 ResNet (Harsawardana et al., 2020) PC 71.34

6 Fast R-CNN (Prasetyo et al., 2020) PC 80.00
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the image was directly downloaded from Google 
search. There were about 50 images that were 
downloaded from Google that were used for testing. 
Before the testing process, the consideration for 
each class was clarified with the expert. The result 
of the detection was underripe because the FFB 
was ripe but with juxtaposition with unripe. The 
detection threshold was set at about 0.5 to ensure 
that the confidence rate of the intersection of the 
detection box is relatively high. This mechanism 
is built on the EfficientDet-Lite2 and could prove 
that the classification could be done. Figure 4 
shows examples of the classification result for each  
class.

The flowchart of the Android detection 
application and usage process is shown in Figure 3. 
There are two modes of the camera: Directly using 
the mobile phone camera or using the webcam USB-
based camera connected to the mobile phone. After 
choosing the camera mode, the classifier must scan 
the aiming process with the TensorFlow Lite model, 
as shown in Figure 5. If there is a detection, the 
process continues to capture the data. If no detection 
results have occurred, then the process of taking the 
picture is repeated.

TensorFlow Lite would determine the class 
and bounding box based on the classification of 
the EfficientDet-Lite2 embedded in the application. Journal of Oil Palm Research 
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Figure 5. Classification Flowchart on the mobile phone.

Start

Sign in to app

Choose 
camera

inCam mode

Aim camera to
palm oil fruit

Input image 
via camera

Class detection with 
TFLite model

Display result 
on screen

Record
detection
result?

Insert result into
"Result Board"

Exported

CSV File

End

Hit capture button

Export recorded data

USBCam mode

No

Yes

The accuracy of EfficientDet-Lite2 is about 84%, 
which shows that the model could fit the situation 
using an image outside the dataset. Despite having 
slightly lower accuracy than previous models, 
with around 90% accuracy, the developed model 
demonstrated its feasibility for application in a 
real-world plantation setting, including FFB on 
the trees. The challenge is that the state-owned 
enterprise plantation has a high standard to 
determine ripeness, whereas, in private plantations, 

After the detection was done and shown in the 
bounding box, the approved counting result was 
saved to the phone database. Approved counting 
result was done by selecting the save button icon, as 
shown in Figure 6. After being approved, the result 
was saved in the Android SQLite database.

 Figure 6. Classification result after taking a picture directly of 
the oil palm FFB.
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the ripeness standard is lower, so the half-ripe or 
underripe can be considered ripe. In the testing 
scenario of the Android application, sometimes 
the class and bounding box results could differ in a 
flash condition when there is a fusion area between 
black-colored and orange-red parts. The overall 
performance is acceptable to be used in the big 
plantation situation.

CONCLUSION

This research applied the EfficientDet-Lite2 
with proposed hyperparameter tuning in the 
Android application. This application can classify 
oil palm ripeness into four categories: Unripe, 
underripe, ripe, and overripe. Using a back-and-
forth convolutional process, Bi-FPN could do the 
scaling variation to capture the image’s feature 
from the coarse once related until a more detailed 
feature. EfficientDet, as the embodiment of the 
EfficientNet backbone with the D model, showed 
that resolution variation could effectively help the 
detection of the oil palm with striking differences 
in certain conditions. The proposed model uses  
EfficientDet-Lite2 as the backbone network and uses 
the input size of EfficientDet D2 to get more detailed 
features. EfficientDet-Lite2 had a good mAP score 
and could be used on mobile phones with an 
accuracy of 84%.
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