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ABSTRACT
Due to the continuous labour crisis, the oil palm industry in Malaysia has lost an estimated worth of 
RM10.46 billion unharvested fruit in the first five months of the year 2022. A robotic system in automating 
the harvesting process of the oil palm fresh fruit bunches (FFB) is proposed to solve the existing problems 
related to oil palm harvesting and further enhances the development of oil palm harvesting technologies. 
This article aims to review the six identified key technologies for solving the technological challenges in 
the development of this robotic system. The key technologies are as follows: (1) oil palm ripeness detection; 
(2) oil palm cutting mechanism; (3) tree climbing mechanism; (4) motion trajectory planning for fruit 
harvesting manipulator; (5) localisation; (6) navigation and obstacle avoidance. Six criteria for successful 
implementation of the proposed harvesting robot are discussed followed by recommendations on the type of 
technology used. The integration of these technologies as a complete robotic system is analysed. Prediction 
on the trend of technological development in oil palm harvesting is discussed.
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INTRODUCTION

Overview of Oil Palm Industry

The oil palm industry is one of most significant 
commodity crops in Malaysia, with exports 
totalling more than RM64.84 billion in 2019 
(Parveez et al., 2020). With estimated oil palm 
plantation area of 5.9 million hectares, the industry 
is working harder than ever to address concerns 
about sustainability and safety that have been 
raised on a worldwide scale. Furthermore, the oil 
palm plantation in Malaysia is accountable for the 
employment of 428 000 workers as of May 2017 
(Tang and Al Qahtani, 2019). According to Meijaard 
et al. (2020), palm oil is subjected to about 40% of 
the present global yearly demand for vegetable oil 
for use in food and fuel. Therefore, improving the 
overall efficiency in oil palm industry will provide 
huge positive impact to the world.

Problems Related to Oil Palm Harvesting

Labour shortage. According to FMT Reporters, 
(2022), the oil palm plantation was short of 28 940 
workers, each of whom could pick two tonnes of fresh 
fruit bunches (FFB) every day. Due to the continuous 
labour crisis, the oil palm industry in Malaysia 
has lost an estimated worth of RM10.46 billion 
unharvested FFB from January to May of year 2022. 
In Malaysia, foreign workers make up more than 
75% of the total workforce in oil palm plantations 
(Channel News Asia, 2022). The difficulty in hiring 
foreign workers, particularly those from Indonesia, 
occurs because of immigration restrictions brought 
on by COVID-19 pandemic. 

The work environment in oil palm 
plantations is considered as 4-Ds (dirty, difficult, 
dangerous, demeaning) by Malaysians (SOPPOA, 
2021). According to the study conducted by 
Bhuanantanondh et al. (2021), 88% of oil palm 
harvesting workers suffered a prevalence of 
musculoskeletal disorders (MSDs) in year 2020. 
The most affected body parts of MSDs for oil palm 
harvesting workers include the lower back, shoulder, 
neck, upper back, and hand. The common risk factors 
of MSDs in oil palm harvesting include lifting and 
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carrying heavy FFB, extended or repeated stooping, 
and repetitive muscle movements. Moreover, 
the lack of ergonomics in the oil palm harvesting 
process has caused high rates of developing MSDs 
on workers in oil palm plantations as compared 
with other agricultural sectors (Bhuanantanondh et 
al., 2021).

Most oil palm plantations have uneven terrain, 
which is usually located in rough and sloping 
areas (Sowat et al., 2018). Therefore, accessibility 
by workers to the oil palm plantation is the biggest 
factor limiting the use of mechanised harvesting 
equipment. Therefore, manual labour harvesting is 
still regarded as the most effective choice. 

FFBs of tall oil palm trees are difficult to harvest. 
The older oil palm trees can grow up to 20 m in 
height (Britannica, 2021). Highly skilled workers 
are required to harvest the FFB at this height. 
Despite the high yield of these older oil palm 
trees, it is claimed to be not economical to harvest 
them. Therefore, the tall oil palm trees will be left 
unharvested in the plantation and pending to be 
replanted. This issue has been solved by planting 
the dwarf variant of the oil palm, which can grow 
up to 6 m in height (Bernama, 2021). However, 
replanting the oil palm trees takes time and there 
is still large percentage of tall oil palm tree that 
remains unharvested.

Trends in Development of Oil Palm Harvesting 
Method

Malaysia has progressed through several 
harvesting technologies, from manual to semi-
mechanised to fully mechanised. The manual 
harvesting process is usually done by using 
two types of tools: Chisel and sickle. Chisels are 
normally used for harvesting FFB from shorter 
trees, which are below 3 m in height. For taller trees, 
a sickle with long pole is used. Handling these tools, 
especially those with long flexible pole, is a very 
difficult and dangerous task (Sowat et al., 2018). 
Therefore, the workers must possess exceptional 
tool handling skills in addition to having sufficient 
energy to complete the cutting task for taller oil 
palm trees.

To solve the issues related to manual 
harvesting, semi-mechanised tools are developed 
which are more economical and efficient. The 
Cantas motorized cutter was developed by the 
Malaysian Palm Oil Board (MPOB), capable of 
harvesting FFB at 4.5 - 6.0 m in height (Zahid and 
Firdaus, 2018). Cantas enables 37% faster cutting 
than using a traditional manual sickle with pole, 
while productivity increased from 4.19 to 11.60 t 
FFB/day (Sowat et al., 2018). Although Cantas had 
demonstrated to boost harvesting effectiveness, 
however this technology possesses various 
limitations. Firstly, the maximum reach for Cantas 

is only 6.0 m while the height of oil palm trees can 
go up to 20.0 m. Secondly, the workers using this 
mechanised cutter are exposed to a high magnitude 
of vibrations. Exposure to these vibrations for an 
extended period may cause the development of 
Hand-Arm Vibration Syndrome (HAVS), affecting 
the health of the workers (CCOHS, 2017).

Source: Shuib et al. (2011)

Figure 1. FFB harvesting operation with Cantas motorised cutter.

Other than semi-mechanised harvesting, there 
are several attempts that have been made on fully 
mechanised harvesting techniques. One of the 
techniques is using a harvesting machine with a 
cutting mechanism mounted to the end effector 
of a boom (Sowat et al., 2018). These cutting 
mechanisms included hydraulic scissors, circular 
blades and wire-cutting mechanism. The boom of 
the harvesting machine was mounted onto a tracked 
vehicle powered by a 31.5 hp diesel engine with a 
loading capacity of 500 kg (Shuib et al., 2011). This 
technique achieved the productivity of harvesting 4 
to 6 t FFB/ day. However, it had a limited maximum 
height that the cutting mechanisms could reach. 
Increase in the maximum reach would require 
the use of longer boom, which would be heavier, 
larger in size and less cost-effective. Moreover, 
the relatively large size of the vehicle also caused 
accessibility issues, especially on narrow and rough 
terrain. Furthermore, heavy vehicles, which are 10 
to 30 t in weight, often cause soil compaction when 
running through the oil palm estate (Sowat et al., 
2018). This would in turn degrade the soil quality 
and reduce the crop yields.
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Source: Shuib et al. (2011)

Figure 2. Fully mechanised harvesting machine.

Another approach to fully mechanised 
harvesting is by using a tree climbing robotic 
harvester (Shokripour et al., 2010). This climbing 
robot was designed to be as light as possible, 
hence, reducing the amount of energy required 
to reach the top of the tree as shown in Figure 3. 
Further details on the tree climbing mechanisms 
are discussed under the “Tree Climbing Mechanism” 
section. The advantage of using climbing robot in 
oil palm FFB harvesting is that it can reach the top 

of the oil palm tree regardless of the height, which 
solves the limitations of other harvesting methods. 
According to Sowat et al. (2018), the current 
climbing robots could only climb trees with smooth  
surfaces. However, oil palm trees are usually full 
of frond stubs, which is the results of pruned 
fronds and forms irregular surface on the entire 
trunk. Hence, a reliable tree climbing mechanism 
for oil palm tree has not been fully developed to 
this date.

Research Problem

A robotic system in automating the harvesting 
process of the oil palm FFB is proposed to further 
enhance the development of harvesting technologies 
and solve the existing problems. The technological 
challenges for developing this robotic system are 
discussed as follows.

Difficulty of a mobile robot to manoeuvre 
autonomously in oil palm plantation. The terrain 
of oil palm plantations can be categorised into 
four major types: Flat, hilly, peat and sandy (Teoh, 
2000). The hilly terrains are less accessible to the 
mobile robot especially on wheels or tracks due to 
the limited climbing angles. Besides, the terrains 
with peat soil are soft, damp, and uneven. This will 
cause the mobile robot to have a high chances of 
getting stuck when manoeuvring through this area. 
Moreover, the existence of largely grown vegetation 
on the ground in oil palm plantations will cause 
difficulty for sensors to detect the available path. 

Inaccuracy of existing robot localisation 
technology for oil palm plantation. Localisation 
refers to the ability of the robot to determine its 
location on the plantation. Most of the existing 
robot localisation technology revolves around 
the use in urban areas (Georgiev and Allen, 2004), 
unmanned aerial vehicles (Back et al., 2020) or 
ships (Medina et al., 2018). Since the working 
conditions of these areas differ from the oil palm 
plantation, direct implementation of the existing 
localization techniques will cause incompatibility 
and inaccuracies in the result. Therefore, adaptation 
and modification of these localisation techniques are 
required before implementing them in the oil palm 
plantation. 

Non-robust climbing mechanism for climbing 
robot to move up and down the oil palm tree. Most 
of the existing climbing mechanisms are designed 
for climbing trees with relatively circular shape of 
trunk. Furthermore, these mechanisms are very 
limited to climbing the trees with a specified range 
of diameter. Since the trunks of oil palm trees have 
irregular shapes and the diameter variation is 
relatively large between each tree, the existing tree 
climbing mechanisms are not robust enough to be 
implemented for the oil palm tree (Tan et al., 2014). 
Therefore, modifications and improvements to the 

Source: Shokripour et al. (2010)

Figure 3. Oil palm climbing robot.
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existing climbing mechanisms must be made so that 
it is feasible to be used on oil palm trees.

Non-existence of robotic harvesting 
manipulator that can detect and harvest the oil 
palm FFB autonomously. As discussed earlier, 
all the existing solutions for oil palm harvesting 
require manpower to harvest manually or operate 
on the semi-mechanised equipment. Thus, high 
labour cost is still required for oil palm harvesting. 
This problem can be solved by implementing the 
state-of-the-art robotic manipulator technology 
such that robots are used to harvest the oil palm 
FFB autonomously, hence, minimising the labour 
cost.Inaccuracy of ripeness classification for oil 
palm FFB in field conditions. Human judgement 
is the current way of determining the oil palm FFB 
ripeness in the plantation. As the judgement varies 
between individuals, there is a lack of consistency in 
the classification of oil palm FFB ripeness (Rismen 
et al., 2020). Furthermore, there is a lack of existing 
research on the development of techniques that can 
classify the FFB ripeness with high accuracy and 
consistency in the field conditions.

Purpose of this Review

Six key technologies are identified to solve 
the technological challenges stated in previous 
section. These technologies are (1) oil palm ripeness 
detection; (2) oil palm cutting mechanism; (3) tree 
climbing mechanism; (4) motion trajectory planning 
for fruit harvesting manipulator; (5) localisation; 
and (6) navigation and obstacle avoidance. The 
aim of this article is to review the state-of-the-art 
development of these key technologies towards the 
development of autonomous robots for harvesting 
oil palm FFB. Besides, a set of criteria for the 
successful implementation of these technologies 
will be discussed. Further analysis is conducted on 
the integration of these technologies as a complete 
robotic system followed by predicting the trend of 
technological development in oil palm harvesting.

KEY TECHNOLOGIES ON AUTONOMOUS OIL 
PALM HARVESTING

Oil Palm FFB Ripeness Detection

In general, the ripeness of the oil palm FFB can 
be classified into five categories: Unripe, underripe, 
ripe, overripe, and rotten. The ripeness level has 
significant relationships with the quality and oil 
content of the oil palm FFB. The oil content of the 
FFB is highest at the ripe stage while it reduces when 
reaching the overripe stage. Therefore, it is crucial 
to determine the FFB ripeness and only harvest the 
ripe FFB to ensure the maximum quality and yield 
of palm oil.

Dan et al. (2018) proposed a technique of 
identifying the oil palm FFB ripeness through 
Raman spectroscopy. This technique worked 
by measuring the vibrational characteristics 
of molecules while exposing the oil palm FFB 
samples with laser light. The result from this 
study showed that the Raman intensity at 
identified wavenumbers was the highest at the 
ripe stage, with the trend of increasing value from 
unripe to ripe stage, then decreasing from ripe to 
rotten stage. Raj et al. (2021) further implemented 
this finding with the use of machine learning 
methods to classify the ripeness automatically. 
This research achieved a classification accuracy of 
100% by using fine k-nearest neighbours (KNN) 
classifier. One of the advantages of using Raman 
spectroscopy to determine the oil palm FFB 
ripeness was that it can provide sensitive, fast, 
and significant amounts of data for classifying 
the fruit ripeness level. However, the results 
obtained from this study were done in a controlled 
environment, where the outcome was not verified 
under field conditions. Furthermore, using Raman 
spectroscopy to classify the oil palm FFB ripeness 
requires the fruit to be sliced before measuring the 
Raman intensity, which is impractical to use in 
field conditions.

The oil palm FFB ripeness can also be classified 
through image analysis methods. According to 
Shuwaibatul et al. (2019), the ripeness stages of 
oil palm fruit could be classified by using colour 
features and bag of visual words (BOVW). In 
the colour features method, the image dataset 
was segmented by using the K-mean clustering 
algorithm to filter out the fruit and spikes 
from the image. Hue measurements from the 
segmented images were used as the input feature 
for support vector machine (SVM) to classify the 
ripeness of oil palm FFB. The BOVW method used 
the speeded up robust features (SURF) algorithm 
to convert the images into feature vectors. The 
BOVW was formed after clustering the feature 
vectors by using K-means Clustering algorithm. 
The BOVW was the frequency representation 
of the visual word occurrences in an image as 
illustrated in Figure 4. The SVM classifier was 
developed to classify the oil palm FFB ripeness 
based on the extracted BOVW feature. This study 
obtained average classification accuracy of 57% 
and 70% by using the colour features and BOVW 
methods respectively. Using the image analysis 
method to classify the oil palm FFB ripeness 
has the advantage of relatively long-distance 
classification. Besides, preparation of the oil palm 
fruit samples was not required in this method. 
However, the classification accuracy of this 
method was relatively low as the classification 
algorithms were sensitive to ambient light when 
taking the images. 
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According to Herman et al. (2020), the ripeness of 
oil palm fruit could be classified by using computer 
vision based on deep learning and visual attention 
techniques. The residual attention mechanism 
allowed the classification algorithm to recognise 
small details between images. Combining the 
residual attention mechanism with deep learning 
techniques, the proposed model was called ResAtt 
DenseNet. This paper utilised a Ten Crop pre-
processing method to increase the number of images 
in the dataset, by cropping each image from different 
orientations with horizontal flipping. This technique 
achieved the test F1 score of 0.6929. This technique 
had higher classification accuracy compared to the 
machine learning method based on colour features 
and BOVW. However, deep learning algorithms 
are more computationally complex than machine 
learning algorithms.

Other than computer vision-based classification, 
Rismen et al. (2020) proposed a technique for 
identifying and forecasting the oil palm ripeness 
by using an inductive sensor system as shown in 
Figure 5. The inductive sensor was used to obtain 
the resonant frequency data for the target oil palm 
FFB. Discriminant analysis algorithm was applied 
to classify the fruit ripeness based on the sampled 
resonance frequency values. It was found that 
the value of resonant frequency decreased as the 
fruit ripened. Therefore, the age of ripeness of the 
fruit from anthesis could be estimated by using 
polynomial regression. This research successfully 
achieved the test result of 100% classification 
accuracy and 13.45 days of root-mean-square error 
in estimating the age of ripeness. Using inductive 
sensor to classify the oil palm FFB ripeness had 

higher classification accuracy over the other 
classification methods. Besides, this method 
was non-invasive, where the fruit sample was 
not damaged when detecting ripeness. Since the 
inductive sensor provided continuous range of 
resonant frequency data, estimation of the age of 
fruit ripeness could be achieved through regression 
technique, solving the limitation of machine vision 
techniques. One of the disadvantages of using 
inductive sensor was the relatively low sensing 
range, where the sensor must be physically in-
contact with the fruit.

Tuerxun et al., 2020 proposed the use of optical 
sensors to detect the ripeness of oil palm FFB. This 
method used light emitting diode (LED) to emit 
light at different wavelengths towards the FFB. The 
spectral data of the reflected light from the FFB was 
captured by the optical spectrometer. By using the 
Lazy KStar classifier, this research achieved 63% 
of classification accuracy. Setiawan et al., (2019) 
obtained a better result of 88.2% accuracy by using 
a similar approach but the accuracy was determined 
based on oil content measurement rather than grader 
evaluation. Therefore, the results obtained from 
Setiawan et al. (2019) had higher validity as grader 
evaluation tends to be inconsistent. Besides, KNN 
and discriminant analysis algorithm were used as 
the classifiers in this research, while both obtained 
the same classification results. Using optical sensors 
to detect the ripeness of oil palm FFB has the 
advantage of non-destructive testing, where the FFB 
is not damaged in the detection process. However, 
the accuracy of classification might be affected by 
external lighting especially when implementing 
under field conditions.

Source: Shuwaibatul et al. (2019)

Figure 4. Histogram of visual word occurrences used in the bag of visual word method.
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Source: Rismen et al. (2020)

Figure 5. Inductive sensor system to detect the oil palm FFB ripeness.

TABLE 1. SUMMARY OF REVIEW ON OIL PALM FFB RIPENESS DETECTION

Author Detection technique Classifier type Predictors Accuracy (%) F1 score

Raj et al., 2021 Raman spectroscopy KNN
4 peak intensity and 
2 peak positions at 

different wavenumbers
100.0 -

Shuwaibatul et al., 2019 Computer vision SVM BOVW 70.0 -

Herman et al., 2020 Computer vision ResAtt DenseNet RGB value - 0.69

Rismen et al., 2020 Inductive sensor discriminant analysis Resonance frequency 100.0 -

Tuerxun et al., 2020 Optical sensor Lazy KStar Reflected light spectrum 63.0 -

Setiawan et al., 2019 Optical sensor KNN and discriminant analysis Reflected light spectrum 88.2 -

Oil Palm Cutting Mechanism

During the harvesting process, the oil palm 
FFB may be located behind the fronds and 
obstruct the reach of the cutting mechanism. 
Therefore, the fronds must be trimmed before 
the cutting mechanism can reach the FFB. The 
design of the cutting mechanism must serve two 
purposes: Trimming the fronds and harvesting 
the FFB. 

Shuib et al. (1988) developed an oil palm FFB 
harvesting machine with scissor and grapple 
mechanisms as shown in Figure 6. The scissor 

mechanism was used to cut the fruit bunch while 
the grapple mechanism held the fruit bunch to 
prevent it from falling. Both mechanisms were 
hydraulically powered. Using scissor cutting 
mechanism to harvest the oil palm FFB had the 
advantage of low mechanical vibration compared 
to the reciprocating mechanism. Besides, there 
was no reaction force induced on the manipulator 
during the cutting process, minimising the risk 
of damaging the mechanism of the manipulator. 
However, this mechanism was relatively heavy as 
the structure must be rigid enough to withstand the 
high cutting force on the fruit bunch.

Captions:

1. On/ off button

2. Rechargeable battery

3. Blueetooth

4. MicroSD port

5. Inductive sensor

6. Signal processing panel

7. Sensing panel

8. Adjustable stick

9. Mobile phone
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Source: Shuib et al. (2011)

Figure 6. Oil palm FFB harvesting machine with grapple and scissor 
cutting mechanism.

The cutting mechanism for harvesting oil palm 
FFB could be done by using a cutting blade with a 
reciprocating mechanism (Shokripour et al., 2012). 
This mechanism replicated the back-and-forth 
motion of conventional hacksaw to cut the fruit 
bunch. This reciprocating motion was produced 
from a rotary motor with gear mechanism as shown 
in Figure 7. Using reciprocating cutting mechanism 
had advantage of smaller blade size which made 
it easier to be aligned properly to the target during 
the cutting process. However, the reciprocating 
motion caused intense vibration on the manipulator, 
potentially damaging the mechanism over time and 
reducing the accuracy of the cut.

Blade 
holer

Linear 
bearing

Slider

Crank 
needle 
bearing

Shaft
Fan

Motor

Motor 
gear

Gearshaft 
bearing

Crank 
gear

Source: Shokripour et al. (2012)

Figure 7. Reciprocating mechanism with saw blade.

Azaman et al. (2022) had proposed a method 
for harvesting the oil palm FFB by using pulse fibre 
laser system. This method worked by emitting a 

50 W laser beam at frequency of 500 kHz and focal 
length of 63 mm at the target object. This method 
achieved the average cutting time of 342 s on cutting 
the oil palm frond, which was very long compared 
to other cutting mechanisms. Moreover, a small 
scale of combustion on the palm fronds surface was 
observed during the cutting process, indicating 
the possibility of the frond to catch fire. The use of 
laser cutting method had the advantage of requiring 
lesser mechanical parts, reducing the weight and 
maintenance needed. Besides, no vibration would 
be induced on the manipulator during the cutting 
process. This research shows a promising alternative 
method for cutting the oil palm FFB, where the use 
of higher power laser can further reduce the cutting 
time.

Source: Azaman et al. (2022).

Figure 8. Laser cutting process of oil palm frond in laboratory condition.

Tree Climbing Mechanism

The use of harvesting machine with boom to 
reach the top of the oil palm tree has limitations on 
the maximum vertical reach due to instability. While 
increasing the maximum vertical reach, the weight 
of the harvesting machine must be increased to 
ensure stability. Therefore, it is not feasible to use the 
harvesting machine with boom for taller trees. This 
issue can be solved by using tree climbing robot to 
reach the top of the oil palm tree.

Shokripour et al. (2010) designed a four-
wheeled climbing robot for oil palm tree as shown 
in Figure 9. This robot utilised passive spring 
mechanism to ensure the wheels were clamped 
tightly on the tree. The clamping force on the 
wheels could be calibrated manually by using 
the lead screw to adjust the initial position of 
the wheels. Sprockets were used as the wheels to 
increase the adhesion on the tree. This climbing 
mechanism required a control system to balance 
the tilt angle of the robot on the tree. This could be 
achieved by controlling the individual motor on 
each side of the wheels. The advantage of using 
this climbing mechanism was that it can climb 
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TABLE 2. SUMMARY OF REVIEW ON OIL PALM CUTTING MECHANISM.

Author Cutting method Advantages Limitations

Shuib et al., 1988 Hydraulic scissor • Low mechanical vibration.
• No reaction force induced on the 

manipulator.

• Entire structure of mechanism is 
relatively heavy.

Shokripour et al., 2012 Reciprocating blade • Small blade size.
• Easy to align the blade to the target.

• Causes intense vibration on the 
manipulator.

Azaman et al., 2022 Pulse fibre laser • Requires fewer mechanical parts.
• Relatively lightweight.
• No vibration induced on the 

manipulator.

• Very slow cutting speed.
• Potentially cause fire on the target 

object.

up and down the tree relatively fast while the 
entire robot was relatively lightweight. However, 
this climbing mechanism requires the operator 
to assemble and calibrate the robot on the tree 
manually, which is impractical for autonomous 
harvesting.

Source: Shokripour et al. (2010)

Figure 9. Four-wheeled climbing robot for oil palm tree.

Mustapa et al. (2018) developed a spiral tree 
climbing robot for pole-like tree. This robot had 
three modules: Steering, driving and support 
module. The steering module consisted of two 
motors to change the angle of the driving module. 
The driving module had two wheels with springs 
inside the shaft for clamping the wheels on the tree. 
The support module consisted of four-ball castors 
to guide the movement of the robot. The advantage 
of using spiral tree climbing mechanism was that it 
allows the robot to rotate around the tree, allowing 
the manipulator with a cutting mechanism to 
harvest oil palm FFB around the tree. Besides, the 
use of a support module eliminated the need to use 
active control system for balancing the tilt of the 
robot. However, this climbing mechanism required 
the operator to assemble and calibrate the robot 
on the tree manually, which was impractical for 
autonomous harvesting.

Bionic climbing robot inspired by primates had 
proven to have more flexibility than wheel-based 
climbing robot (Wang et al., 2020). This climbing 
robot composed of four legs and a body frame as 

shown in Figure 10. The four legs were designed 
to realise the motion of clamping and loosening on 
the tree. A total of eight degree-of-freedom (DOF) 
was required to imitate the tree climbing posture 
of the primate. The actuators of this robot were 
coordinated based on the forward and inverse 
kinematics mathematical models. By tuning the 
mathematical models, this climbing mechanism 
could be applied to trees with different diameters, 
increasing the flexibility of the climbing mechanism. 
However, it required a complex control system as 
compared with wheel-based climbing mechanisms. 
Besides, the climbing speed of the bionic climbing 
robot was slower than wheel-based climbing robot.

Source: Wang et al. (2020)

Figure 10. Climbing robot inspired by primates.

Khairam et al. (2021) developed a clamp-based 
pole climbing robot as shown in Figure 11. This robot 
consisted of three parts: Top clamp, bottom clamp, 
and body. The two clamps opened and closed to 
tighten and loosen the grip on the pole respectively. 
The body of the robot consisted of three servo 
motors. These servo motors were coordinated with a 
control system to realise the upward and downward 
movements of the robot. The advantage of using 
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clamp-based climbing mechanism was that the robot 
can be attached and detached to and from the tree 
easily as compared with wheel-based mechanism. 
However, this mechanism had issues where the 
clamps did not adhere properly to the tree due to the 
absence of spring mechanism. Besides, the climbing 
speed of the clamp-based climbing robot was slower 
than wheel-based climbing robot.

Source: Khairam et al. (2021)

Figure 11. Low-cost pole climbing robot.

Motion Trajectory Planning for Fruit Harvesting 
Manipulator

The motion trajectory planning is a crucial 
technology in enabling precise and efficient 
movements of the robotic manipulator for harvesting 
the oil palm FFB. The motion trajectory planning 
algorithm must be able to identify the fronds that 
obstruct the cutting path of the FFB. Hence, trimming 
of the fronds can be conducted, if necessary, before 
harvesting the FFB.

One of the motion trajectory planning methods 
for fruit harvesting manipulators was an improved 
multi-objective particle swarm optimisation 
(GMOPSO) algorithm (Cao et al., 2021). This 

TABLE 3. SUMMARY OF REVIEW ON TREE CLIMBING MECHANISM

Author Climbing mechanism Advantages Limitations

Shokripour et al., 2010 Wheel-based with four wheels • Relatively fast in climbing speed.
• Entire climbing mechanism is 

relatively lightweight.

• Requires an active control 
system to balance the tilt 
angle of the robot, increasing 
complexity.

Mustapa et al., 2018 Wheel-based with two wheels 
and support modules

• Relatively fast in climbing speed.
• Allows the robot to rotate 

around the tree.

• The climbing mechanism is 
more complex.

Wang et al., 2020 Bionic climbing mechanism 
inspired by primates

• Very flexible, can be applied on 
trees with different diameters.

• The climbing mechanism is 
very complex.

• Slower climbing speed 
than wheel-based climbing 
mechanism.

Khairam et al., 2021 Clamp-based with top and 
bottom clamps

• Can be attached and detached to 
and from the tree easily.

• Has issues where the clamps 
do not adhere properly to the 
tree.

• Slower climbing speed 
than wheel-based climbing 
mechanism.

method was divided into three steps: Path 
planning, B-spline parameterisation, and trajectory 
optimisation. The optimised rapidly exploring 
random tree (RRT) algorithm was used to produce 
the path points to be taken by the manipulator. The 
generated path points were connected by using 
multiple sections of B-spline curve to create a 
smooth motion trajectory. To ensure the generated 
trajectory meets the dynamic and kinematic 
limitations of the manipulator, the pulsation, energy 
consumption, and motion time of the manipulator 
must be optimised. This could be achieved by 
using the proposed GMOPSO algorithm to obtain 
the Pareto optimal solution set. This algorithm was 
used to solve all the constraints and optimise the 
trajectory taken by the manipulator. This method 
achieved 96.67% success rate in harvesting apples 
with an average motion time of 25.5 s.

Tang et al. (2020) proposed a path planning 
method for picking citrus fruits by using an 
improved immune algorithm (IIA). This method 
used a binocular camera to detect the location of the 
target fruits. The proposed IIA method was used 
to plan the optimised path for harvesting multiple 
fruits detected from the binocular camera. The IIA 
algorithm was an improvement of basic immune 
algorithm (BIA), which was an optimisation 
algorithm inspired by the biological immune system. 
BIA could obtain a global optimal solution with 
high probability, making it suitable for generating 
the shortest path on multiple target fruits. However, 
BIA had long runtime. To reduce the runtime, IIA 
algorithm combined the tabu search strategy with 
BIA algorithm. This reduced the runtime by 21.49% 
as compared with the BIA algorithm. However, 
since then the number of ripened oil palm FFB that 
present at the same time on a tree is usually not more 
than two, and the implementation of a path planning 
algorithm on multiple fruits are not required. 

ARTIC
LE IN

 PRESS

ARTIC
LE IN

 PRESS



10

JOURNAL OF OIL PALM RESEARCH

Therefore, a simpler path planning algorithm can be 
used for harvesting oil palm FFB to further reduce 
the required runtime. 

You et al. (2020) proposed a motion planning 
framework capable of sequencing cut points while 
avoiding obstacles in real-time. This method used 
an RGB-D (Red Green Blue-Depth) camera to map 
and construct a 3D representation of the tree. The cut 
points for trimming the tree were manually selected 
by a human operator. The motion of the manipulator 
was generated by using Fast Reliable and Efficient 
Database Search Motion Planner (FREDS-
MP) framework. The FREDS-MP framework 
precomputed the motion trajectories into a database. 
The precomputed motion trajectories were used to 
further optimise the trajectory while moving the 
manipulator in real-time. This method had achieved 
overall success rate of 75% on tree pruning tasks. 
However, the requirements of pre-mapping and 
manual cut point selection were impractical for the 
autonomous harvesting process. 

Wang et al. (2022) proposed a trajectory planning 
method based on offline and online smoothing 
algorithms. The collision-free trajectory was initially 
generated by using sample-based planners, which 
represented the paths with segmented polygonal 
lines. These segmented paths caused the manipulator 
to stop at the vertex, causing jerky motion and 
reducing the motion speed. This problem could be 
solved by smoothing the trajectory. The proposed 
offline smoothing algorithm utilized short-cutting 
heuristic method to generate collision-free trajectory, 
described by using cubic polynomial functions. The 
trajectory was generated based on the kinematic 
constraints of the manipulator. This method can also 
be used in online smoothing, where the trajectory is 
optimised in real-time during execution. However, 
it was found that the short-cut construction in 
online smoothing might fail due to insufficient 

computational iteration, resulting in the jerky 
movement of the manipulator. Therefore, hardware 
with higher computing speed is required for online 
smoothing.

Localisation

Localisation refers to the process by which 
the robot determines its position and orientation 
within the oil palm plantation. This technology is 
an important component of navigation, ensuring 
that the robot is harvesting the targeted oil palm 
tree at the right location. Robot localisation typically 
involves using various sensors and algorithms to 
estimate the position of a robot relative to a known 
or previously mapped reference point.

According to Georgiev and Allen, (2004), 
a combination of Global Positioning System 
(GPS), digital compass and odometry were used 
for real-time localisation in open-space outdoor 
environments. An extended Kalman filter was used 
to estimate the location of robot by combining these 
sensors data obtained in real-time. This technique 
strongly depended on the quality of the absolute 
position obtained from the GPS. Therefore, the 
reduction in GPS quality would reduce the accuracy 
of estimating the robot location. To solve this 
limitation, a visual pose-estimation algorithm was 
proposed to produce a more accurate estimation of 
the location of the robot. This technique used the 
linear features of the surrounding image obtained 
from a camera to compute the pose of the robot. This 
could be achieved by matching the linear features 
with the environmental model consisting of a 
database of small-scale facade models. By combining 
the GPS, compass and odometry localisation with 
the visual pose-estimation technique, this research 
was able to achieve the mean error of 0.2865 m 
relative to the exact location of the robot. However, 

TABLE 4. SUMMARY OF REVIEW ON MOTION TRAJECTORY PLANNING FOR FRUIT HARVESTING MANIPULATOR

Author Path finding algorithm Trajectory optimisation algorithm Findings

Cao et al., 2021 Rapidly exploring 
random tree (RRT)

Improved multi-objective particle 
swarm optimisation (GMOPSO)

• Able to optimise pulsation, motion time and 
energy consumption of the trajectory based on 
kinematic constraints of the manipulator.

• Achieved 96.67% success rate on harvesting 
apple with the average motion time of 25.5 s.

Tang et al., 2020 Improved immune 
algorithm (IIA)

- • Reduces the runtime by 21.49% as compared 
with the BIA algorithm.

• Able to provide path planning for harvesting 
multiple fruits.

You et al., 2020 Fast Reliable and Efficient Database Search Motion Planner 
(FREDS-MP)

• Requires pre-mapping of the tree structure.
• Achieved overall success rate of 75.0% on tree 

pruning tasks.

Wang et al., 2022 Sample-based planners Smoothing algorithm based on 
short-cutting heuristic method

• Able to generate collision-free trajectory based 
on the kinematic constraints of the manipulator.

• Can plan trajectory in real-time to avoid 
collision on dynamic obstacles.
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the requirement of an environment model reduced 
the feasibility of applying this technique to different 
environments.

Hamer and Dandrea, (2018) proposed a 
localization system using an Ultra-Wideband 
(UWB) Network. This method enabled numerous 
robots to localise themselves simultaneously within 
a defined area. This could be achieved by equipping 
the area with a stationary radio modules network, 
which is also called as anchors, synchronised with 
a distributed clock synchronisation scheme. An 
algorithm was also developed by utilising the time-
difference of arrival (TDOA) concept to allow both 
the transmitting anchors and receiving robots to 
determine their location within the area. The TDOA 
algorithm worked by computing the time difference 
in receiving data packets from multiple anchors, 
which is proportional to the distance of robot between 
each of the anchors. This localisation technique had 
achieved the localisation error range of ±100 mm on 
the horizontal plane. One of the advantages of this 
localisation technique was that it allows multiple 
robots to locate themselves independently and 
anonymously. However, the actively transmitting 
anchors required power supply to operate, which 
was not available across the oil palm plantation. 

Another global localisation method for mobile 
robots is to use radio frequency identification (RFID) 
technology (Tao et al., 2020). This method combined 
phase difference and readability information from 
RFID signals to allow mobile robots to determine 
their position and attitude angle within an area. 
This could be done by installing two RFID reader 
antennas on the mobile robot and distributing RFID 
reference tags on the floor in a square pattern. One of 
the advantages of this localisation method was the 

high positioning accuracy, with an average precision 
of 5.9 cm. Besides, this method also allowed the 
mobile robots to determine their orientation with 
mean accuracy of 2.1°. One of the limitations in 
this localisation method was that it requires the 
RFID reference tag to be placed with a fixed pattern 
across the floor, which was impractical for outdoor 
environments.

To further improve the dead reckoning 
localisation based on inertia navigation system 
(INS), Jeon et al. (2021) had proposed a learning-
based lane detection model to aid in the 
localisation of the vehicle. This technique worked 
by combining the sensor data obtained from INS 
with the lane detection network. The INS system 
provided the position, velocity and heading of 
the vehicle, while the lane detection network 
obtained the feature points describing the lane 
positions. An unscented Kalman Filter (UKF) was 
being used to combine the INS and lane points 
data to estimate the location of the vehicle. This 
research also compared the proposed method with 
other localisation methods as shown in Figure 12, 
showing promising results of the proposed method 
on estimating the vehicle location in GNSS denied 
area. This localisation technique could effectively 
minimise the error drifting problem found in 
standalone INS, hence, providing a more accurate 
estimation of the robot location. Furthermore, a 
learning-based lane detection model increased the 
robustness of the system and allowed the system 
to be implemented on different road geometry 
and environments. However, this method did 
not include the localisation based on rolling and 
pitching motion of the vehicle, which might cause 
errors in the localisation results.

Source: Jeon et al. (2021)

Figure 12. Comparisons of the localisation methods. 
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The proposed method is lane-aided dead-
reckoning system, being compared with other 
systems such as direct sparse odometry (DSO), 
Visual-aided Inertia Navigation System (VINS) with 
stereo and monocular vision and standalone INS 
based dead reckoning system.

Navigation and Obstacle Avoidance

The navigation and obstacle avoidance allow the 
robot to maneuverer through the oil palm plantation 
autonomously with the desired path while avoiding 
the obstacles. There are several approaches to 
navigation and obstacle avoidance in autonomous 
systems such as sensor-based, map-based, hybrid 
and machine learning-based navigations. The 
processes of navigation and obstacle detection 
involve mapping, localisation, path planning, 
obstacle detection and control.

The generation of the shortest path for mobile 
robot navigation while avoiding obstacles could 
be done by using improved breadth first search 
(Tripathy et al., 2021). This technique worked in a 
grid-based environment where the mobile robot 
was localised by using RFID tags placed equally 
in a square grid. Greedy algorithm was used 
to trace out the shortest and most optimal path 
found from the breadth first search technique. This 
technique allowed the mobile robot to move in four 
directions: Up, down, left, and right. The advantage 
of using this technique for navigation and obstacle 
avoidance was that very less computational power 
was required to determine the shortest and most 
optimal path. However, since that the mobile robot 
could only move in four directions, the motion of the 
mobile robot was not optimised especially on areas 
with multiple turning points. 

TABLE 5. SUMMARY OF REVIEW ON LOCALISATION

Author Localisation technique Advantages Limitations

Georgiev and Allen, 2004 GNSS, odometry and 
visual pose estimation

• Obtain relatively accurate 
localisation with the mean 
error of 0.2865 m.

• Can be used on areas where 
the GNSS signal is lost.

• Requires the preparation of 
environment model before using, 
reducing the feasibility for using 
on different environments.

Hamer and Dandrea, 2018 Ultra-wideband (UWB) 
network

• Allows multiple robots 
to locate themselves 
independently and 
anonymously.

• Requires power supply for 
multiple active transmitting 
anchors.

Tao et al., 2020 Radio frequency 
identification (RFID) 

• High positioning accuracy, 
with average precision of 
5.9 cm.

• Can determine the orientation 
of the robot with mean 
accuracy of 2.1°.

• Placing RFID reference tags across 
the floor is impractical for outdoor 
environment.

Jeon et al., 2021 Inertia navigation system 
(INS) with learning-based 
lane detection model

• High localisation accuracy on 
GNSS denied area.

• Can be implemented on 
different road geometry and 
environments.

• Rolling and pitching motion of the 
vehicle may cause errors in the 
localisation results.

To solve the inflexibility of grid-based 
environment, Ajeil et al. (2020) had proposed a 
navigation algorithm that worked in both static 
and dynamic environments. This algorithm was 
a hybrid of Particle Swarm Optimisation with 
Modified Frequency Bat algorithm (Hybrid PSO-
MFB). The Modified Frequency Bat (MFB) algorithm 
worked by mimicking the echolocation behaviour 
of microbats during its search operation, where 
path searching was done by altering pulse rates and 
loudness of sound emission. The Particle Swarm 
Optimisation (PSO) algorithm helped to optimise 
the path generation process during navigation. 
Therefore, combining MFB with PSO could balance 
the exploration and exploitation process when 
generating the path for navigation. As a result, the 
Hybrid PSO-MFB algorithm had outperformed 
the MFB algorithm in terms of path optimization. 
However, the computational complexity was higher 
for Hybrid PSO-MFB algorithm than MFB algorithm.

Back et al. (2020) had proposed a vision-based 
trail detection navigation and obstacle avoidance 
technique. This technique worked by combining 
together three methods: Trail following, disturbance 
recovery and obstacle avoidance. The trail following 
method worked by using two convolutional neural 
networks (CNN), one for determining the head 
direction of mobile robot while the other detected 
the lateral position offset of the mobile robot from 
the trail. The disturbance recovery method was used 
when the mobile robot loses track of the trail due to 
disturbances. This method utilised the past outputs 
from the CNN to control the heading direction of the 
mobile robot for recovering back to the trail. Besides, 
the proposed obstacle avoidance method worked 
based on optical flow estimation with CNN. The 
advantage of using this technique for navigation 

ARTIC
LE IN

 PRESS

ARTIC
LE IN

 PRESS



13

AUTONOMOUS HARVESTING ROBOT FOR OIL PALM PLANTATION: A REVIEW

and obstacle avoidance was that the computational 
cost is relatively low as the whole system could be 
implemented in a low power single-board computer. 
However, this technique only worked in known and 
trained environments, which was not robust to be 
applied in complex environments. 

Other than deep learning, deep reinforcement 
learning (DRL) method called Autonomous 
Navigation and Obstacle Avoidance (ANOA) was 
proposed by Wu et al. (2020). The DRL algorithm 
worked by exploring the environment based 
on rewards mechanism to optimise the actions 
for completing the tasks. ANOA was based on 
Q-learning, where the algorithm learns the value of 
an action to estimate obtainable rewards known as Q 
values. The Q values were used for discrete decision 
making on controlling the mobile robot. The ANOA 
deep reinforcement learning framework is shown 
in Figure 13. Comparing with different Q-learning 
algorithm such as deep Q-network (DQN) and 
Deep Sarsa, ANOA used a duelling DQN which was 
proven to be the fastest in optimising the actions. 
In contrast with ANOA, heuristic-based navigation 
methods such as path planning and swarm 
intelligence algorithms were computationally slow 
and unable to avoid dynamic obstacles in real-
time. However, Wu et al. (2020) had noted that 
implementing the DRL methods from simulation 
to real world was difficult as the algorithm tended 

Source: Wu et al. (2020)
Figure 13. Block diagram of the ANOA algorithm.

to be overfitted to the simulated environment when 
training, which led to poor generalisation.

To solve the problem associated with poor 
generalisation of deep reinforcement learning 
(DRL) in navigation, Liu et al. (2021) proposed a 
self-improving navigation technique called lifelong 
learning for navigation (LLfN). To improve the 
navigation results in different environments, 
gradient episodic memory (GEM) was used when 
training the DRL model. GEM algorithm prevents 
catastrophic forgetting of the DRL model, which 
is the result of overwriting old knowledge when 
adapting to the new environment. GEM works 
by ensuring the update process of the navigation 
model will not increase the loss of previous tasks. 
The training process was done on three different 
simulated environments. The training result 
had shown that LLfN was capable of learning in 
new environments while avoiding catastrophic 
forgetting. In comparison with LLfN, the Sequential 
Training technique had shown improvement of 
navigation performance in present environment 
but reduced the previous ones. Therefore, LLfN 
technique had proven to be effective in multiple 
environment usage without the need of additional 
parameter tuning and calibration. However, this 
technique increased the total time required for 
training the navigation model as compared with 
Sequential Training.
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TABLE 6. SUMMARY OF REVIEW ON NAVIGATION AND OBSTABLE AVOIDANCE

Author Methodology
Dynamic obstacle 

avoidance
Findings

Tripathy et al., 2021 Path finding using improved 
breadth first search with RFID 
tags distributed equally in a 
square grid for localisation.

No • Very less computational power is required.
• Allows the mobile robot to move in only 4 directions, 

which is not optimised for environment with multiple 
turning points.

Ajeil et al., 2020 Hybrid PSO-MFB Yes • Outperformed the MFB algorithm in terms of path 
optimisation. 

• The computational complexity is higher for hybrid 
PSO-MFB algorithm than MFB algorithm

Back et al., 2020 Deep learning based on vision-
based trail detection navigation 
and obstacle avoidance

Yes • Can be implemented in a low power single-board 
computer. 

• Computational cost is relatively low.
• Only works in known and trained environments.

Wu et al., 2020 Deep reinforcement learning 
using duelling deep Q-network

Yes • Proven to be the fastest in optimising the actions 
compared to deep Q-network and Deep Sarsa.

• Algorithm tends to be overfitted to the simulated 
environment when training, which leads to poor 
generalisation.

Liu et al., 2021 Deep reinforcement learning 
with self-improvement 
technique

Yes • Proven to be effective in multiple environment usage. 
• Increases the total time required for training the 

navigation model.

DISCUSSION

The use of autonomous robotic system in harvesting 
oil palm FFB is proposed to solve the existing 
problems in harvesting operation. A successful 
deployment of this robotic system requires solving 
all the technological challenges as stated in this 
review. This can be achieved by implementing and 
integrating the six identified key technologies.

Criteria for Successful Implementation on the Key 
Technologies

To further assist on the future research in 
this proposed robotic harvesting system, a set of 
criteria for successful implementation of these key 
technologies are discussed in this section.

The harvesting robot must have the capability 
to detect the ripeness of the oil palm FFB accurately 
with minimal human supervision. This process is 
crucial as the detection result is required for the robot 
to decide which oil palm FFB to harvest. Besides, the 
detection result can also be used by the robot to locate 
the position of the fruit for planning the motion 
trajectory and harvest the FFB. As reviewed in the 
previous section, the existing methods for identifying 
the ripeness of oil palm FFB can be categorised into 
four types: Raman spectroscopy, computer vision, 
inductive sensor, and optical sensor. Based on the 
advantages and limitations of these methods, the 
use of computer vision is recommended due to the 
relatively long sensing range. 

The harvesting robot must be equipped with 
an efficient cutting tool to harvest the oil palm FFB. 
Since that the kinematics of the robotic manipulator 
are different from human body, the cutting tool 

must be redesigned to fit the usage for the robotic 
manipulator. This is essential to increase the 
cutting efficiency and maximise productivity of the 
harvesting robot. The existing cutting mechanisms 
are chisel, sickle, mechanised chisel, mechanised 
sickle, reciprocating saw, scissor, and laser. 
Modification and experimentation on these cutting 
tools are required to find the best fit of use on the 
robotic manipulator.

The harvesting robot must have a motion 
trajectory planning algorithm to control the robotic 
manipulator on harvesting the oil palm FFB. The 
motion trajectory of the robotic manipulator highly 
depends on the position and orientation of the fruit 
on the tree, type of cutting tools being used and the 
mechanics of the robotic manipulator. Therefore, 
the motion trajectory planning algorithm used 
must be robust to be used in different situations 
and configurations. The existing motion trajectory 
planning methods are mainly based on optimisation 
techniques such as improved multi-objective 
particle swarm optimisation (GMOPSO) algorithm, 
improved immune algorithm (IIA), Fast Reliable 
and Efficient Database Search Motion Planner 
(FREDS-MP) framework, and motion smoothing 
algorithms. Adaptation of these algorithms based 
on the configuration of robot is required to ensure 
the motion trajectory for harvesting the oil palm FFB 
is optimised.

The harvesting robot must have the ability to 
climb up and down the oil palm tree efficiently. 
Since the oil palm trees can grow up to an average 
height of 15 m, it will be impractical for the robot 
to harvest the fruit with structural support from 
the ground level due to instability. Therefore, the 
use of climbing mechanism is recommended for 
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the robot to reach the top of the tree. This is because 
the climbing mechanism allows the robot to utilise 
the tree trunk as the structural support, hence, 
minimising the vertical reach required for the robotic 
manipulator. The existing tree climbing mechanism 
are categorised as follows: Clamp-based, wheel-
based, and bio-inspired climbing mechanisms. The 
major challenge on implementing these climbing 
mechanisms on oil palm tree is the existence of 
frond base on the tree trunk. The frond base reduce 
the roundness and smoothness of the tree trunk, 
which increases the complexity of the climbing 
mechanisms required to move up and down the tree 
effectively. Removal of the frond base from the tree 
trunk is recommended to overcome this challenge.

The harvesting robot must be able to determine 
its location in the oil palm plantation. The ability 
of the robot to localise is crucial such that the robot 
will not move randomly in the oil palm plantation. 
Furthermore, it allows the robot to harvest the oil palm 
FFB within the plantation with a planned path for 
maximising productivity. The existing technologies 
for robot localisation are global navigation satellite 
system (GNSS), inertia measurement unit (IMU), 
radio frequency identification (RFID), visual 
odometry and active beaconing system. Each of these 
localisation technologies have their own advantages 
and limitations, implementing a combination of 
these technologies is recommended.

The harvesting robot must be capable of 
maneuverer through the oil palm plantation 
autonomously while avoiding obstacles. This allows 
the robot to harvest the oil palm FFB from tree to 
tree without the need for human supervision. There 
are several approaches to navigation and obstacle 
avoidance in autonomous systems such as sensor-
based, map-based, hybrid and machine learning-
based navigations. The sensor-based navigation 
and obstacle avoidance uses various sensors, such 
as cameras, lidars, and radars, to perceive the 
environment and detect obstacles in the path of 
the robot. The map-based navigation and obstacle 
avoidance technique uses a pre-built map of the 
environment to plan a path that avoids obstacles. 
The hybrid navigation and obstacle avoidance 
technique use both sensor-based and map-based 
navigation. Machine learning-based navigation and 
obstacle avoidance use machine learning algorithms 
to train robots to navigate through the environment 
and avoid obstacles. Since that the trees are planted 
in a grid manner, hybrid navigation and obstacle 
avoidance is recommended.

Interconnectivity Between the Key Technologies 
as a Complete System

The proposed robotic system must be 
integrated with the six key technologies to achieve 
autonomous harvesting process. Localisation 

provides the essential spatial awareness required 
for the robot to pinpoint its exact position within 
the oil palm plantation. This positional data is then 
employed by navigation systems to plan optimal 
paths, enabling the robot to move from tree to 
tree efficiently. The obstacle avoidance technology 
ensures the navigation path remains clear and 
collision-free. Besides, having a robust climbing 
mechanism allows the robot to reach the top of the 
tree efficiently. After climbing to the top of the tree, 
the ripeness detection technology allows the robot 
to identify and distinguish ripe FFB from unripe 
ones accurately. After the ripe FFB is detected, the 
robotic manipulator with cutting tool can harvest 
the FFB with the right trajectory by implementing 
the motion trajectory planning algorithms. Finally, 
the robot climbs down the tree and the harvesting 
process repeats.

The use of Robot Operating System (ROS) as 
the middleware to integrate the robot control is 
recommended. ROS is widely used in complex 
robotic systems due to its versatility, modularity, 
and robustness. It provides a framework that 
simplifies the development and integration of 
various components within a robot, making it easier 
to implement the six key technologies as a complete 
system.

Prediction on the Trend of Technological 
Development in Oil Palm Harvesting

Driven by the need to increase efficiency, reduce 
labour costs, and address various challenges in 
the oil palm plantation, the use of autonomous 
harvesting robots can serve as the long-term solution 
to these problems. This solution is feasible based on 
the following arguments.

Increased adoption of artificial intelligence and 
machine learning. These technologies will enable 
the harvesting robots to better understand their 
environment, make real-time decisions, and adapt 
to changing conditions.

Advancements in sensor technology. The cost 
of sensors, including LiDAR, cameras, GPS, and 
other environmental sensors, is steadily decreasing. 
This reduction in sensor prices makes it more 
economically viable to equip the harvesting robots 
with the necessary sensing capabilities, enabling 
robots to navigate, perceive their surroundings, and 
make informed decisions more effectively.

Improved battery technology. Battery 
technology is a crucial factor in the development 
of autonomous harvesting robots, as they need 
reliable power sources for extended operation in 
the field. Advances in battery technology, including 
higher energy densities, faster charging, and longer 
lifespans, will lead to robots with extended runtimes 
and reduced downtime for recharging or battery 
replacement.
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Increasing computing power. The increase in 
computing capabilities enables robots to process 
larger volumes of data and perform complex 
computations in real time. It also facilitates the use of 
more sophisticated artificial intelligence algorithms, 
allowing robots to adapt and make decisions more 
rapidly and accurately.

CONCLUSION

To solve the existing problems related to oil palm 
harvesting, a robotic system in automating the 
harvesting process of the oil palm FFB is proposed. 
The technological challenges for developing this 
robotic system are (1) difficulty of a mobile self-
driving unit to manoeuvre autonomously in oil 
palm plantation; (2) inaccuracy of existing robot 
localisation technology for oil palm plantation; 
(3) non-robust climbing mechanism for climbing 
robot to move up and down the oil palm tree; (4) 
non-existence of robotic harvesting module that can 
detect and harvest the oil palm FFB autonomously 
and (5) inaccuracy of ripeness classification for oil 
palm FFB in field conditions.

Six key technologies for developing this robotic 
system are reviewed. These technologies include: 
(1) oil palm ripeness detection; (2) oil palm cutting 
mechanism; (3) tree climbing mechanism; (4) motion 
trajectory planning for fruit harvesting manipulator; 
(5) localisation; (6) navigation and obstacle 
avoidance. Future work for implementation and 
integration of these key technologies onto oil palm 
harvesting process are necessary to further enhance 
the development of oil palm industry.

Six criteria for successful implementation of the 
proposed autonomous robotic system in harvesting 
oil palm are discussed. Recommendations on the 
technology used for fulfilling these criteria are made. 
Interconnectivity between the key technologies 
as a complete system is analysed. The trend of 
technological development in oil palm harvesting is 
predicted.
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